USER'S MANUAL

S3C8245/P8245/C8249/P8249

8-Bit CMOS
Microcontrollers
Revision 4

SMMSUNG

NOTIFICATION OF REVISIONS

ORIGINATOR: Samsung Electronics, LSI Development Group, Ki-Heung, South Korea

PRODUCT NAME: S3C8245/P8245/C8249/P8249 8-bit CMOS Microcontroller

DOCUMENT NAME: \quad S3C8245/P8245/C8249/P8249 User's Manual, Revision 4

DOCUMENT NUMBER: 24-S3-C8245/P8245/C8249/P8249-032004

EFFECTIVE DATE: March, 2004

SUMMARY:

As a result of additional product testing and evaluation, some specifications published in the S3C8248/C8245/P8245/C8247/C8249/P8249 User's Manual, Revision 3, have been changed. These changes for S3C8248/C8245/P8245 /C8247/C8249/P8249 microcontroller, which are described in detail in the Revision Descriptions section below, are related to the followings:

- S3C8248/C8247 moved.
- Chapter 1. Features
- Chapter 19. Electrical Data

DIRECTIONS:
Please note the changes in your copy (copies) of the S3C8248/C8245/P8245/ C8247/C8249/P8249 User's Manual, Revision 3. Or, simply attach the Revision Descriptions of the next page to S3C8248/C8245/P8245/C8247/C8249 /P8249 User's Manual, Revision 3.

REVISION HISTORY

Revision	Date	Remark
0	June, 1999	Preliminary Spec for internal release only.
1	September, 1999	First edition.
2	July, 2000	Second edition.
3	March, 2002	Third edition.
4	March, 2004	Fourth edition.

REVISION DESCRIPTIONS

1. DEVICE TYPE

The S3C8247/C8248 device type should be moved. Product name and document name should be changed into 'S3C8245/P8245/C8249/P8249'.

2. FEATURES

The Operating Temperature Range should be changed ' $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}^{\prime}$ into ${ }^{\prime}-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}^{\prime}$ in the page $1-2$, from $19-2$ to 19-12, and from 21-4 to 21-7.

3. ELECTRICAL DATA

Table 19-2. D.C. Electrical Characteristics (Concluded) (Page 19-4)
$\left(\mathrm{T}_{\mathrm{A}}=-25{ }^{\circ} \mathrm{C}\right.$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V$)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply current ${ }^{(1)}$	$\mathrm{I}_{\mathrm{DD} 5}$	Main stop mode: sub-osc stop $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$	-	1	3	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$		0.5	2		

Table 19-12. D.C. Electrical Characteristics (Concluded) (Page 19-12)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V)

Oscillator	Test Condition	Min	Typ	Max	Unit
Crystal	$\mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 0} \mathrm{V}$ to 5.5 V	-	-	40	ms
Ceramic	Stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range.	-	-	4	ms
External clock	$X_{\mathbb{I N}}$ input high and low level width $\left(\mathrm{t}_{\mathrm{XH}}, \mathrm{t}_{\mathrm{XL}}\right)$	50	-	500	ns

Table 21-4. D.C. Electrical Characteristics (Continued) (Page 19-3, 21-5)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Oscillator feed back resistors	$\mathrm{R}_{\mathrm{osc} 1}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{X}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{X}_{\mathrm{OUT}}=0 \mathrm{~V}$	300	600	1500	$\mathrm{k} \Omega$

S3C8245/P8245 /C8249/P8249

8-BIT CMOS MICROCONTROLLERS USER'S MANUAL

Revision 4

SAMSUNG
ELECTRONICS

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.
"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

S3C8245/P8245/C8249/P8249 8-Bit CMOS Microcontrollers

User's Manual, Revision 4

Publication Number: 24-S3-C8245/P8245/C8249/P8249-032004

© 2004 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001 certification (BSI Certificate No. FM24653). All semiconductor products are designed and manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd.
San \#24 Nongseo-Ri, Giheung- Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box \#37, Suwon 449-900

TEL: (82)-(031)-209-1934
FAX: (82)-(331)-209-1889
Home-Page URL: Http://www.samsungsemi.com
Printed in the Republic of Korea

Preface

The S3C8245/P8245/C8249/P8249 Microcontroller User's Manual is designed for application designers and programmers who are using the S3C8245/P8245/C8249/P8249 microcontroller for application development. It is organized in two main parts:

Part I Programming Model

Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming model, instruction set, and interrupt structure. It has six chapters:

Chapter 1	Product Overview	Chapter 4	Control Registers
Chapter 2	Address Spaces	Chapter 5	Interrupt Structure
Chapter 3	Addressing Modes	Chapter 6	Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3C8245/P8245/C8249/P8249 with general product descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined stack operations.

Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the S3C8-series CPU.
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read, alphabetically organized, register descriptions as a quick-reference source when writing programs.
Chapter 5, "Interrupt Structure," describes the S3C8245/P8245/C8249/P8249 interrupt structure in detail and further prepares you for additional information presented in the individual hardware module descriptions in Part II.
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of each instruction are presented in a standard format. Each instruction description includes one or more practical examples of how to use the instruction when writing an application program.
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information in Chapters 4,5 , and 6 . Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the S3C8245/P8245/C8249/P8249 microcontroller. Also included in Part II are electrical, mechanical, OTP, and development tools data. It has 16 chapters:

Chapter 7	Clock Circuit	Chapter 15	10-bit-to-Digital Converter
Chapter 8	nRESET and Power-Down	Chapter 16	Serial I/O Interface
Chapter 9	I/O Ports	Chapter 17	Voltage Booster
Chapter 10	Basic Timer	Chapter 18	Voltage Level Detector
Chapter 11	8-bit Timer A/B	Chapter 19	Electrical Data
Chapter 12	16-bit Timer 0/1	Chapter 20	Mechanical Data
Chapter 13	Watch Timer	Chapter 21	S3P8245/P8249 OTP
Chapter 14	LCD Controller/Driver	Chapter 22	Development Tools

Two order forms are included at the back of this manual to facilitate customer order for S3C8245/P8245/ C8249/P8249 microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these forms, fill them out, and then forward them to your local Samsung Sales Representative.

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

S3C8-Series Microcontrollers 1-1
S3C8245/P8245/C8249/P8249 Microcontroller 1-1
OTP 1-1
Features 1-2
Block Diagram 1-3
Pin Assignment 1-4
Pin Descriptions 1-6
Pin Circuits 1-7
Chapter 2 Address Spaces
Overview 2-1
Program Memory (ROM) 2-2
Register Architecture 2-3
Register Page Pointer (PP) 2-5
Register Set 1 2-6
Register Set 2 2-6
Prime Register Space 2-7
Working Registers 2-8
Using the Register Points 2-9
Register Addressing 2-11
Common Working Register Area (COH-CFH) 2-13
4-bit Working Register Addressing 2-14
8-bit Working Register Addressing 2-16
System and User Stacks 2-18
Chapter 3 Addressing Modes
Overview 3-1
Register Addressing Mode (R) 3-2
Indirect Register Addressing Mode (IR) 3-3
Indexed Addressing Mode (X) 3-7
Direct Address Mode (DA) 3-10
Indirect Address Mode (IA) 3-12
Relative Address Mode (RA) 3-13
Immediate Mode (IM) 3-14

Table of Contents (Continued)

Chapter 4 Control Registers
Overview 4-1
Chapter 5 Interrupt Structure
Overview 5-1
Interrupt Types 5-2
S3C8245/C8249 Interrupt Structure 5-3
Interrupt Vector Addresses 5-4
Enable/Disable Interrupt Instructions (EI, DI) 5-6
System-Level Interrupt Control Registers 5-6
Interrupt Processing Control Points 5-7
Peripheral Interrupt Control Registers 5-8
System Mode Register (SYM) 5-9
Interrupt Mask Register (IMR) 5-10
Interrupt Priority Register (IPR) 5-11
Interrupt Request Register (IRQ) 5-13
Interrupt Pending Function Types 5-14
Interrupt Source Polling Sequence 5-15
Interrupt Service Routines 5-15
Generating Interrupt Vector Addresses 5-16
Nesting Of Vectored Interrupts 5-16
Instruction Pointer (IP) 5-16
Fast Interrupt Processing 5-16
Chapter 6 Instruction Set
Overview 6-1
Data Types 6-1
Register Addressing 6-1
Addressing Modes 6-1
Flags Register (Flags). 6-6
Flag Descriptions 6-7
Instruction Set Notation 6-8
Condition Codes 6-12
Instruction Descriptions 6-13

Table of Contents (Continued)

Part II Hardware Descriptions

Chapter $7 \quad$ Clock Circuit

Overview 7-1
System Clock Circuit 7-1
Clock Status During Power-Down Modes 7-2
System Clock Control Register (CLKCON) 7-3
Chapter 8 nRESET and Power-Down
System nRESET. 8-1
Overview 8-1
Normal Mode Reset Operation 8-1
Hardware Reset Values. 8-2
Power-Down Modes 8-5
Stop Mode 8-5
Idle Mode. 8-6
Chapter 9 I/O Ports
Overview 9-1
Port Data Registers 9-2
Port 0. 9-3
Port 1 9-6
Port 2. 9-8
Port 3. 9-10
Port 4. 9-12
Port 5. 9-14
Chapter 10 Basic Timer
Overview 10-1
Basic Timer (BT) 10-1
Basic Timer Control Register (BTCON) 10-1
Basic Timer Function Description. 10-3

Table of Contents (Continued)

Chapter 11 8-bit Timer A/B
8-Bit Timer A. 11-1
Overview 11-1
Function Description 11-2
Timer A Control Register (TACON) 11-3
Block Diagram 11-4
8-Bit Timer B. 11-5
Overview 11-5
Timer B Pulse Width Calculations 11-7
Chapter 12 16-bit Timer 0/1
16-Bit Timer 0 12-1
Overview 12-1
Function Description 12-1
Timer 0 Control Register (TOCON) 12-2
Block Diagram 12-3
16-Bit Timer 1 12-5
Overview 12-5
Function Description 12-6
Timer 1 Control Register (T1CON) 12-7
Block Diagram 12-8
Chapter 13 Watch Timer
Overview 13-1
Watch Timer Control Register (WTCON: R/W) 13-2
Watch Timer Circuit Diagram 13-3
Chapter 14 LCD Controller/Driver
Overview 14-1
LCD Circuit Diagram 14-2
LCD RAM Address Area 14-3
LCD Control Register (LCON), DOH 14-4
LCD Mode Register (LMOD) 14-5
LCD Drive Voltage 14-7
LCD SEG/SEG Signals 14-7
LCD Voltage Driving Method 14-12

Table of Contents (Continued)

Chapter 15 10-bit Analog-to-Digital Converter
Overview 15-1
Function Description 15-1
Conversion Timing 15-2
A/D Converter Control Register (ADCON) 15-2
Internal Reference Voltage Levels 15-3
Block Diagram 15-4
Chapter 16 Serial I/O Interface
Overview 16-1
Programming Procedure 16-1
SIO Control Register (SIOCON) 16-2
SIO Pre-Scaler Register (SIOPS) 16-3
Block Diagram 16-3
Serial I/O Timing Diagram 16-4
Chapter 17 Voltage Booster
Overview 17-1
Function Description 17-1
Block Diagram 17-2
Chapter 18 Voltage Level Detector
Overview 18-1
Voltage Level Detector Control Register (VLDCON). 18-2

Table of Contents (Concluded)

Chapter 19 Electrical Data
Overview 19-1
Chapter 20 Mechanical Data
Overview 20-1
Chapter 21 S3P8245/P8249 OTP
Overview 21-1
Operating Mode Characteristics 21-4
Chapter 22 Development Tools
Overview 22-1
SHINE 22-1
SAMA Assembler 22-1
SASM88 22-1
HEX2ROM 22-1
Target Boards 22-1
TB8245/8249 Target Board 22-3
SMDS2+ Selection (SAM8) 22-5
IDLE LED 22-5
STOP LED 22-5

List of Figures

Figure Title
Number Number
1-1 S3C8245/C8249 Block Diagram 1-3
1-21-31-4
S3C8245/C8249 Pin Assignment (80-TQFP-1212) 1-5
Pin Circuit Type B (nRESET) 1-8
Pin Circuit Type C 1-8
Pin Circuit Type D-2 (P3) 1-8
Pin Circuit Type D-4 (P0) 1-8
Pin Circuit Type E-2 (P1) 1-9
Pin Circuit Type F-10 (P2.0-P2.6). 1-9
Pin Circuit Type F-18 (P2.7/VLD REF) 1-9
Pin Circuit Type H (SEG/COM) 1-9
Pin Circuit Type H-4. 1-10
Pin Circuit Type H-14 (P4, P5) 1-10
Program Memory Address Space 2-2
Internal Register File Organization 2-4
Register Page Pointer (PP) 2-5
Set 1, Set 2, Prime Area Register, and LCD Data Register Map 2-7
8-Byte Working Register Areas (Slices). 2-8
Contiguous 16-Byte Working Register Block 2-9
Non-Contiguous 16-Byte Working Register Block 2-102-916-Bit Register Pair2-11
Register File Addressing 2-12
Common Working Register Area. 2-13
2-11 4-Bit Working Register Addressing. 2-15
2-12
4-Bit Working Register Addressing Example 2-15
2-13 8-Bit Working Register Addressing 2-16
2-14 8-Bit Working Register Addressing Example. 2-17
2-15 Stack Operations 2-18
3-1 Register Addressing 3-2
3-2
Working Register Addressing 3-2
3-3 Indirect Register Addressing to Register File. 3-3
3-4 Indirect Register Addressing to Program Memory 3-4
3-5 Indirect Working Register Addressing to Register File. 3-5
Indirect Working Register Addressing to Program or Data Memory. 3-6
3-6
Indexed Addressing to Register File 3-7
$3-7$
$3-8$Indexed Addressing to Program or Data Memory with Short Offset3-8Indexed Addressing to Program or Data Memory3-9Direct Addressing for Load Instructions.3-10
3-11 Direct Addressing for Call and Jump Instructions 3-11
3-12 Indirect Addressing 3-12
3-13 Relative Addressing 3-13
3-14 Immediate Addressing 3-14
4-1
Register Description Format 4-4

List of Figures (Continued)

Figure Title Page
Number Number
5-1 S3C8-Series Interrupt Types 5-2
5-2 S3C8245/C8249 Interrupt Structure 5-3ROM Vector Address Area5-4
5-4 Interrupt Function Diagram 5-75-5
System Mode Register (SYM) 5-9Interrupt Mask Register (IMR)5-10
5-7 Interrupt Request Priority Groups 5-11
5-8 Interrupt Priority Register (IPR) 5-12
5-9
Interrupt Request Register (IRQ) 5-136-1
System Flags Register (FLAGS) 6-6
Main Oscillator Circuit (Crystal or Ceramic Oscillator) 7-1
Main Oscillator Circuit (RC Oscillator) 7-1
System Clock Circuit Diagram 7-2
System Clock Control Register (CLKCON) 7-3
Oscillator Control Register (OSCCON).... 7-4
STOP Control Register (STPCON) 7-4
Port 0 High-Byte Control Register (POCONH) 9-4
Port 0 Low-Byte Control Register (POCONL) 9-4
Port 0 Interrupt Control Register (POINT) 9-5
Port 0 Interrupt Pending Register (POPND) 9-5
Port 1 High-Byte Control Register (P1CONH) 9-6
Port 1 Low-Byte Control Register (P1CONL) 9-7
Port 1 Pull-up Control Register (P1PUP) 9-7
Port 2 High-Byte Control Register (P2CONH) 9-8
Port 2 Low-Byte Control Register (P2CONL) 9-9
Port 3 High-Byte Control Register (P3CONH) 9-10
9-11 Port 3 Low-Byte Control Register (P3CONL) 9-11
9-12 Port 4 High-Byte Control Register (P4CONH) 9-12
9-13 Port 4 Low-Byte Control Register (P4CONL) 9-13
9-14 Port 5 High-Byte Control Register (P5CONH) 9-14
9-15 Port 5 Low-Byte Control Register (P5CONL) 9-15

List of Figures (Continued)

Page Title PageNumber
Number
10-1 Basic Timer Control Register (BTCON) 10-2
10-2 Basic Timer Block Diagram 10-4
11-1 Timer A Control Register (TACON) 11-3
11-2 Timer A Functional Block Diagram 11-4
11-3 Timer B Functional Block Diagram 11-5
11-4 Timer B Control Register (TBCON) 11-6
11-5 Timer B Data Register (TBDATAH/L) 11-6
11-6 Timer B Output Flip-Flop Waveforms in Repeat Mode 11-8
12-1 Timer 0 Control Register (TOCON) 12-2
12-2 Timer 0 Functional Block Diagram. 12-3
12-3 12-412-4
Timer 0 Data Register (TODATAH/L). 12-4
12-712-6Timer 1 Control Register (T1CON)
Timer 1 Functional Block Diagram. 12-8
12-7 Timer 1Counter Register (T1CNTH/L) 12-9
12-8 Timer 1 Data Register (T1DATAH/L) 12-9
13-1 Watch Timer Circuit Diagram 13-3
14-1LCD Function Diagram.14-1
LCD Circuit Diagram 14-2
LCD Display Data RAM Organization 14-3
Select/No-Select Bias Signals in Static Display Mode 14-7
Select/No-Select Bias Signals in 1/2 Duty, 1/2 Bias Display Mode 14-8
Select/No-Select Bias Signals in 1/3 Duty, 1/3 Bias Display Mode 14-8
LCD Signal and Wave Forms Example in 1/2 Duty, 1/2 Bias Display Mode. 14-9
LCD Signals and Wave Forms Example in 1/3 Duty, $1 / 3$ Bias Display Mode 14-10
14-11
14-10 Voltage Dividing Resistor Circuit Diagram
15-1
A/D Converter Control Register (ADCON) 15-2
A/D Converter Data Register (ADDATAH/L) 15-3
15-3 A/D Converter Functional Block Diagram 15-4
15-4 Recommended A/D Converter Circuit for Highest Absolute Accuracy. 15-5
16-1 Serial I/O Module Control Registers (SIOCON) 16-2
16-2 SIO Pre-scale Registers (SIOPS). 16-3
16-3 SIO Functional Block Diagram. 16-316-4
Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON. $4=0$) 16-4
16-5 Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON. $4=1$) 16-4

List of Figures (Concluded)

Page Title Page
Number Number
17-1 Voltage Booster Block Diagram 17-2
17-2 Pin Connection Example 17-2
18-1 Block Diagram for Voltage Level Detect 18-1
Voltage Level Detect Circuit and Control Register 18-2
19-2
Input Timing for External Interrupts (Ports 0). 19-6
Input Timing for nRESET 19-6
19-3 Stop Mode Release Timing Initiated by nRESET 19-7
19-4 Stop Mode(main) Release Timing Initiated by Interrupts 19-8
19-5 Stop Mode(sub) Release Timing Initiated by Interrupts 19-8Serial Data Transfer Timing.19-11
19-7 19-7 Clock Timing Measurement at $X_{\mathbb{N}}$ 19-13
19-8 Operating Voltage Range 19-14
20-1 Package Dimensions(80-QFP-1420C) 20-1
20-2 Package Dimensions(80-TQFP-1212) 20-2
21-1 S3P8245/P8249 Pin Assignments (80-QFP Package) 21-2
21-2 Operating Voltage Range 21-7
22-1 SMDS Product Configuration (SMDS2+). 22-2
22-2 TB8245/9 Target Board Configuration. 22-3
22-3 40-Pin Connectors (J101, J102) for TB8245/9 22-6
22-4
S3E8240 Cables for 80-QFP Package 22-6

List of Tables

Table Title
Number
Page
Number
Number
1-1 S3C8245/C8249 Pin Descriptions 1-5
2-1 S3C8249/P8249 Register Type Summary 2-3S3C8245/P8245 Register Type Summary2-3
Set 1 Registers 4-1
Set 1, Bank 0 Registers 4-2
Set 1, Bank 1 Registers 4-3
5-1 Interrupt Vectors 5-5
Interrupt Control Register Overview 5-6
5-2
Interrupt Source Control and Data Registers 5-8
6-1 Instruction Group Summary 6-2
6-2 Flag Notation Conventions 6-8
6-3
Instruction Set Symbols 6-8
Instruction Notation Conventions 6-9
6-4
Opcode Quick Reference 6-10
6-6 Condition Codes 6-12
8-1
8-28-3
9-1S3C8245/C8249 Set 1 Register and Values after nRESET8-2
S3C8245/C8249 Set 1, Bank 0 Register Values after nRESET 8-3
S3C8245/C8249 Set 1, Bank 1 Register Values after nRESET 8-4
S3C8245/C8249 Port Configuration Overview 9-1
Port Data Register Summary 9-2
Watch Timer Control Register (WTCON): Set 1, Bank 1, FAH, R/W. 13-2
14-1 LCD Control Register (LCON) Organization 14-4
14-2Relationship of LCON. 0 and LMOD. 3 Bit Settings14-4
14-3 LCD Clock Signal (LCDCK) Frame Frequency. 14-5
14-414-5
LCD Mode Control Register (LMOD) Organization, D1H 14-6
Maximum Number of Display Digits per Duty Cycle 14-6
14-6 LCD Drive Voltage Values 14-7

List of Tables (Continued)

Table Title PageNumber
Number
18-1VLDCON Value and Detection Level18-2
19-1 Absolute Maximum Ratings 19-219-2D.C. Electrical Characteristics.19-2
19-3 D.C Electrical Characteristics of S3C8245 19-5
19-4 A.C. Electrical Characteristics 19-6
19-5 Input/Output Capacitance. 19-7
19-6 Data Retention Supply Voltage in Stop Mode 19-7A/D Converter Electrical Characteristics19-9
Voltage Booster Electrical Characteristics 19-10
Characteristics of Voltage Level Detect Circuit 19-10
19-10 Synchronous SIO Electrical Characteristics 19-11
19-11 Main Oscillator Frequency (fosc1) 19-12
19-12 Main Oscillator Clock Stabilization Time ($\mathrm{t}_{\mathrm{ST} 1}$) 19-12
19-13 Sub Oscillator Frequency (foscz) 19-13
19-14 Sub Oscillator(crystal) Stabilization Time ($\mathrm{t}_{\mathrm{ST} 2}$) 19-14
21-1 Descriptions of Pins Used to Read/Write the EPROM 21-3
21-2 Comparison of S3P8245/P8249 and S3C8245/C8249 Features 21-3
21-3 Operating Mode Selection Criteria 21-4
21-4 D.C Electrical Characteristics. 21-4
21-5 D.C Electrical Characteristics of S3C8245 21-722-1
Power Selection Settings for TB8245/9 22-4Main-clock Selection Settings for TB8245/922-4
22-3 Device Selection Settings for TB8245/9 22-5
2
22-4 The SMDS2+ Tool Selection Setting 22-5

List of Programming Tips

Description PageNumber
Chapter 2: Address Spaces
Using the Page Pointer for RAM clear (Page 0, Page1) 2-5
Setting the Register Pointers 2-9
Using the RPs to Calculate the Sum of a Series of Registers 2-10
Addressing the Common Working Register Area 2-14
Standard Stack Operations Using PUSH and POP 2-19
Chapter 11: 8-bit Timer A/B
To Generate 38 kHz , 1/3 duty signal through P3.0 11-9
To Generate a one pulse signal through P3.0 11-10

List of Register Descriptions

Register Identifier
Full Register Name Page
ADCON A/D Converter Control Register 4-5
BTCON Basic Timer Control Register 4-6
CLKCON System Clock Control Register 4-7
EMT External Memory Timing Register 4-8
FLAGS System Flags Register 4-9
IMR Interrupt Mask Register 4-10
INTPND Interrupt Pending Register 4-11
IPH Instruction Pointer (High Byte) 4-12
IPL Instruction Pointer (Low Byte) 4-12
IPR Interrupt Priority Register. 4-13
IRQ Interrupt Request Register 4-14
LCON LCD Control Register 4-15
LMOD LCD Mode Control Register 4-16
OSCCON Oscillator Control Register. 4-17
POCONH Port 0 Control Register (High Byte) 4-18
P0CONL Port 0 Control Register (Low Byte) 4-19
POINT Port 0 Interrupt Control Register. 4-20
POPND Port 0 Interrupt Pending Register 4-22
P1CONH Port 1 Control Register (High Byte) 4-22
P1CONL Port 1 Control Register (Low Byte) 4-23
P1PUR Port 1 Pull-up Control Register. 4-24
P2CONH Port 2 Control Register (High Byte) 4-25
P2CONL Port 2 Control Register (Low Byte) 4-26
P3CONH Port 3 Control Register (High Byte) 4-27
P3CONL Port 3 Control Register (Low Byte) 4-28
P4CONH Port 4 Control Register (High Byte) 4-29
P4CONL Port 4 Control Register (Low Byte) 4-30
P5CONH Port 5 Control Register (High Byte) 4-31
P5CONL Port 5 Control Register (Low Byte) 4-32

List of Register Descriptions (Continued)

RegisterFull Register NamePageIdentifier
PP Register Page Pointer 4-33
RP0 Register Pointer 0 4-34
RP1 Register Pointer 1 4-34
SIOCON SIO Control Register 4-35
SPH Stack Pointer (High Byte) 4-36
SPL Stack Pointer (Low Byte) 4-36
STPCON Stop Control Register. 4-37
SYM System Mode Register 4-38
TOCON Timer 0 Control Register 4-39
T1CON Timer 1 Control Register 4-40
TACON Timer A Control Register 4-41
TBCON Timer B Control Register 4-42
VLDCON Voltage Level Detector Control Register 4-43
WTCON Watch Timer Control Register 4-44

List of Instruction Descriptions

Instruction Full Register Name Page
Mnemonic Number
ADC Add with Carry 6-14
ADD Add 6-15
AND Logical AND 6-16
BAND Bit AND 6-17
BCP Bit Compare 6-18
BITC Bit Complement 6-19
BITR Bit Reset 6-20
BITS Bit Set 6-21
BOR Bit OR 6-22
BTJRF Bit Test, Jump Relative on False. 6-23
BTJRT Bit Test, Jump Relative on True. 6-24
BXOR Bit XOR 6-25
CALL Call Procedure 6-26
CCF Complement Carry Flag 6-27
CLR Clear 6-28
COM Complement 6-29
CP Compare. 6-30
CPIJE Compare, Increment, and Jump on Equal. 6-31
CPIJNE Compare, Increment, and Jump on Non-Equal 6-32
DA Decimal Adjust 6-33
DEC Decrement 6-35
DECW Decrement Word 6-36
DI Disable Interrupts 6-37
DIV Divide (Unsigned) 6-38
DJNZ Decrement and Jump if Non-Zero 6-39
EI Enable Interrupts 6-40
ENTER Enter 6-41
EXIT Exit. 6-42
IDLE Idle Operation 6-43
INC Increment 6-44
INCW Increment Word. 6-45
IRET Interrupt Return 6-46
JP Jump 6-47
JR Jump Relative 6-48
LD Load. 6-49
LDB Load Bit 6-51

List of Instruction Descriptions (Continued)

InstructionFull Register NamePageMnemonic
LDC/LDE Load Memory 6-52
LDCD/LDED Load Memory and Decrement 6-54
LDCI/LDEI Load Memory and Increment 6-55
LDCPD/LDEPD Load Memory with Pre-Decrement 6-56
LDCPI/LDEPI Load Memory with Pre-Increment 6-57
LDW Load Word 6-58
MULT Multiply (Unsigned) 6-59
NEXT Next 6-60
NOP No Operation 6-61
OR Logical OR. 6-62
POP Pop from Stack 6-63
POPUD Pop User Stack (Decrementing). 6-64
POPUI Pop User Stack (Incrementing) 6-65
PUSH Push to Stack 6-66
PUSHUD Push User Stack (Decrementing) 6-67
PUSHUI Push User Stack (Incrementing) 6-68
RCF Reset Carry Flag 6-69
RET Return 6-70
RL Rotate Left 6-71
RLC Rotate Left through Carry 6-72
RR Rotate Right 6-73
RRC Rotate Right through Carry 6-74
SB0 Select Bank 0 6-75
SB1 Select Bank 1 6-76
SBC Subtract with Carry 6-77
SCF Set Carry Flag. 6-78
SRA Shift Right Arithmetic 6-79
SRP/SRP0/SRP1 Set Register Pointer 6-80
STOP Stop Operation 6-81
SUB Subtract 6-82
SWAP Swap Nibbles 6-83
TCM Test Complement under Mask 6-84
TM Test under Mask 6-85
WFI Wait for Interrupt. 6-86
XOR Logical Exclusive OR 6-87

PRODUCT OVERVIEW

S3C8-SERIES MICROCONTROLLERS

Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode release by interrupt
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to specific interrupt levels.

S3C8245/P8245/C8249/P8249 MICROCONTROLLER

The S3C8245/P8245/C8249/P8249 single-chip CMOS microcontroller are fabricated using the highly advanced CMOS process, based on Samsung's newest CPU architecture.

The S3C8245, S3C8249 are a microcontroller with a 16K-byte, 32K-byte mask-programmable ROM embedded respectively.

The S3P8245 is a microcontroller with a 16K-byte one-time-programmable ROM embedded.
The S3P8249 is a microcontroller with a 32K-byte one-time-programmable ROM embedded.

Using a proven modular design approach, Samsung engineers have successfully developed the S3C8245/P8245/C8249/P8249 by integrating the following peripheral modules with the powerful SAM8 core:

- Six programmable I/O ports, including five 8-bit ports and one 5-bit port, for a total of 45 pins.
- Eight bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).
- Two 8-bit timer/counter and two 16-bit timer/counter with selectable operating modes.
- Watch timer for real time.
- 8-input A/D converter
- Serial I/O interface

The S3C8245/P8245/C8249/P8249 is versatile microcontroller for camera, LCD and ADC application, etc. They are currently available in 80-pin TQFP and 80-pin QFP package

OTP

The S3P8245/P8249 are OTP (One Time Programmable) version of the S3C8245/C8249 microcontroller. The S3P8245 microcontroller has an on-chip 16K-byte one-time-programmable EPROM instead of a masked ROM. The S3P8249 microcontroller has an on-chip 32K-byte one-time-programmable EPROM instead of a masked ROM. The S3P8245 is comparable to the S3P8245, both in function and in pin configuration.
The S3P8249 is comparable to the S3P8249, both in function and in pin configuration.

FEATURES

Memory

- ROM: 32K-byte (S3C8249/P8249)
- ROM: 16K-byte (S3C8245/P8245)
- RAM: 1056-Byte (S3C8249/P8249)
- RAM: 544-Byte (S3C8245/P8245)
- Data memory mapped I/O

Oscillation Sources

- Crystal, ceramic, RC (main)
- Crystal for subsystem clock
- Main system clock frequency $1-10 \mathrm{MHz}$ (3 MHz at $1.8 \mathrm{~V}, 10 \mathrm{MHz}$ at 2.7 V)
- Subsystem clock frequency: 32.768 kHz
- CPU clock divider ($1 / 1,1 / 2,1 / 8,1 / 16$)

Two Power-Down Modes

- Idle (only CPU clock stops)
- Stop (System clock stops)

Interrupts

- 6 level 8 vector 8 internal interrupt
- 2 level 8 vector 8 external interrupt

Watch Timer

- Real-time and interval time measurement
- Clock generation for LCD
- Four frequency outputs for buzzer sound

LCD Controller/Driver

- Maximum 16-digit LCD direct drive capability
- Display modes: static, $1 / 2$ duty ($1 / 2$ bias)
- $1 / 3$ duty ($1 / 2$ or $1 / 3$ bias), $1 / 4$ duty ($1 / 3$ bias)

A/D Converter

- Eight analog input channels
- $50 \mu \mathrm{~s}$ conversion speed at $1 \mathrm{MHz} \mathrm{f}_{\mathrm{ADC}}$ clock
- 10-bit conversion resolution

8-Bit Serial I/O Interface

- 8-bit transmit/receive mode
- 8-bit receive mode
- LSB-first/MSB-first transmission selectable
- Internal/external clock source

Voltage Booster

- LCD display voltage supply
- S/W control en/disable
- 3.0 V drive

45 I/O Pins

- 45 configurable I/O pins

Basic Timer

- Overflow signal makes a system reset.
- Watchdog function

8-Bit Timer/Counter A

- Programmable 8-bit timer
- Interval, capture, PWM mode
- Match/capture, overflow interrupt

8-Bit Timer/Counter B

- Programmable 8-bit timer
- Carrier frequency generator

16-Bit Timer/Counter 0

- Programmable 16-bit timer
- Match interrupt generates

16-Bit Timer/Counter 1

- Programmable 16-bit timer
- Interval, capture, PWM mode
- Match/capture, overflow interrupt

Voltage Detector

- Programmable detection voltage (2.2 V, 2.4 V, 3.0 V, 4.0 V)
- En/Disable S/W selectable

Instruction Execution Times

- 400 ns at 10 MHz (main)
- 122 us at 32.768 kHz (subsystem)

Operating Temperature Range

- $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Operating Voltage Range

- 1.8 V to 5.5 V

Package Type

- 80-QFP-1420C
- 80-TQFP-1212

BLOCK DIAGRAM

Figure 1-1. Block Diagram

PIN ASSIGNMENT

NOTE: The sequence of pins in TQFP package is identical with that in QFP package.

Figure 1-2. S3C8245/C8249 Pin Assignments (80-QFP-1420C)

Figure 1-3. S3C8245/C8249 Pin Assignments (80-TQFP-1212)

PIN DESCRIPTIONS

Table 1-1. S3C8245/C8249 Pin Descriptions

Pin Names	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Pin Description	Circuit Type	$\begin{gathered} \text { Pin } \\ \text { Numbers (note) } \end{gathered}$	Share Pins
P0.0-P0.7	I/O	I/O port with bit programmable pins; Schmitt trigger input or output mode selected by software; software assignable pull-up. P0.0-P0.7 can be used as inputs for external interrupts INT0-INT7 (with noise filter and interrupt control).	D-4	20-27	INT0-INT7
P1.0-1.7	I/O	I/O port with bit programmable pins; Input or output mode selected by software; Open-drain output mode can be selected by software; software assignable pull-up. Alternately P1.0-P1.7 can be used as SI, SO, SCK, BUZ, T1CAP, T1CLK, T1OUT, T1PWM	E-2	28-35	SI, SO, SCK, BUZ, T1CAP T1CLK T1OUT T1PWM
P2.0-P2.7	I/O	I/O port with bit programmable pins; normal input and AD input or output mode selected by software; software assignable pull-up.	$\begin{aligned} & \mathrm{F}-10 \\ & \mathrm{~F}-18 \end{aligned}$	$\begin{gathered} 36-42, \\ 43 \end{gathered}$	$\begin{gathered} \text { ADC0-ADC6 } \\ \text { V }_{\text {VLDREF }} \\ \text { (ADC7) } \end{gathered}$
P3.0-P3.4	I/O	I/O port with bit programmable pins. Input or push-pull output with software assignable pull-up. Alternately P3.0-P3.3 can be used as TACAP, TACLK, TAOUT, TAPWM, TBPWM	D-2	7-11	TACAP TACLK TAOUT TAPWM TBPWM
P4.0-P4.7	I/O	I/O port with bit programmable pins. Pushpull or open drain output and input with software assignable pull-up. P4.0-P4.7 can alternately be used as outputs for LCD SEG	H-14	71-78	SEG16-SEG23
P5.0-P5.7	I/O	I/O port with bit programmable pins. Pushpull or open drain output and input with software assignable pull-up. P5.0-P5.7 can alternately be used as outputs for LCD SEG.	H-14	79-6	SEG24-SEG31

Table 1-1. S3C8245/C8249 Pin Descriptions (Continued)

Pin Names	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Pin Description	Circuit Type	$\begin{gathered} \text { Pin } \\ \text { Numbers } \\ \text { (note) } \end{gathered}$	Share Pins
$\begin{aligned} & \text { ADC0-ADC6 } \\ & \text { ADC7 } \end{aligned}$	1	A/D converter analog input channels	$\begin{aligned} & \mathrm{F}-10 \\ & \mathrm{~F}-18 \end{aligned}$	$\begin{gathered} 36-42 \\ 43 \end{gathered}$	$\begin{gathered} \text { P2.0-P2.6 } \\ \text { P2.7 } \end{gathered}$
$\mathrm{AV}_{\text {REF }}$	-	A/D converter reference voltage	-	44	-
$\mathrm{AV}_{\text {SS }}$	-	A/D converter ground	-	45	-
INTO-INT7	I	External interrupt input pins	D-4	20-27	P0.0-P0.7
nRESET	1	System reset pin (pull-up resistor: $250 \mathrm{k} \Omega$)	B	19	-
TEST	1	0 V: Normal MCU operating 5 V : Test mode 12 V : for OTP writing	-	16	-
SDAT, SCLK	0	Serial OTP interface pins; serial data and clock	D-2	10, 11	P3.3, P3.4
$\mathrm{V}_{\mathrm{DD},} \mathrm{V}_{\mathrm{SS}}$	-	Power input pins for CPU operation (internal) and Power input for OTP Writing	-	12, 13	-
$\mathrm{X}_{\text {OUT, }} \mathrm{XIN}$	-	Main oscillator pins	-	14, 15	-
SO, SCK, SI	I/O	Serial I/O interface clock signal	E-2	33-35	P1.5-P1.7
$\mathrm{V}_{\text {VLDREF }}$	1	Voltage detector reference voltage input	F-18	43	P2.7
TACAP	1	Timer A Capture input	D-2	10	P3.3
TACLK	1	Timer A External clock input	D-2	9	P3.2
TAOUT/TAPWM	0	Timer A output and PWM output	D-2	8	P3.1
TBPWM	0	Timer B PWM output	D-2	7	P3.0
T1CAP	1	Timer 1 Capture input	E-2	28	P1.0
T1CLK	1	Timer 1 External clock input	E-2	29	P1.1
T1OUT/T1PWM	0	Timer 1 output and PWM output	E-2	30	P1.2
COM0-COM3	0	LCD common signal output	H	51-54	-
SEG0-SEG15	0	LCD segment output	H	55-70	-
SEG16-SEG23	0	LCD segment output	H-14	71-78	P4.0-P4.7
SEG24-SEG31	0	LCD Segment output	H-14	79-6	P5.0-P5.7
$\mathrm{V}_{\mathrm{LC}}{ }^{-} \mathrm{V}_{\text {LC2 }}$	0	LCD power supply	-	48-50	-
BUZ	O	$0.5,1,2$ or 4 kHz frequency output for buzzer sound with 4.19 MHz main system clock or 32768 Hz subsystem clock	E-2	32	P1.4
CA, CB	-	Capacitor terminal for voltage booster	-	46-47	-

PIN CIRCUITS

Figure 1-4. Pin Circuit Type B (nRESET)

Figure 1-5. Pin Circuit Type C

Figure 1-6. Pin Circuit Type D-2 (P3)

Figure 1-7. Pin Circuit Type D-4 (P0)

Figure 1-8. Pin Circuit Type E-2 (P1)

Figure 1-9. Pin Circuit Type F-10 (P2.0-P2.6)

Figure 1-10. Pin Circuit Type F-18 (P2.7/VLD REF)

Figure 1-11. Pin Circuit Type H (SEG/COM)

Figure 1-12. Pin Circuit Type H-4

Figure 1-13. Pin Circuit Type H-14 (P4, P5)

ADDRESS SPACES

OVERVIEW

The S3C8245/C8249 microcontroller has two types of address space:

- Internal program memory (ROM)
- Internal register file

A 16-bit address bus supports program memory operations. A separate 8 -bit register bus carries addresses and data between the CPU and the register file.

The S3C8245 has an internal 16-Kbyte mask-programmable ROM. The S3C8249 has an internal 32-Kbyte maskprogrammable ROM.

The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing modes.
A 16-byte LCD display register file is implemented.
There are 1,109 mapped registers in the internal register file. Of these, 1,040 are for general-purpose.
(This number includes a 16-byte working register common area used as a "scratch area" for data operations, four 192-byte prime register areas, and four 64-byte areas (Set 2)). Thirteen 8-bit registers are used for the CPU and the system control, and 53 registers are mapped for peripheral controls and data registers. Twelve register locations are not mapped.

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program codes or table data. The S3C8249 has 32K bytes internal maskprogrammable program memory, the S3C8245 has 16K bytes.

The first 256 bytes of the ROM ($0 \mathrm{H}-0 \mathrm{FFH}$) are reserved for interrupt vector addresses. Unused locations in this address range can be used as normal program memory. If you use the vector address area to store a program code, be careful not to overwrite the vector addresses stored in these locations.

The ROM address at which a program execution starts after a reset is 0100 H .

Figure 2-1. Program Memory Address Space

REGISTER ARCHITECTURE

In the S3C8245/C8249 implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called set 1 and set 2 . The upper 32-byte area of set 1 is further expanded two 32 -byte register banks (bank 0 and bank 1), and the lower 32-byte area is a single 32-byte common area.

In case of S3C8249/P8249 the total number of addressable 8-bit registers is 1122 . Of these 1122 registers, 16 bytes are for CPU and system control registers, 16 bytes are for LCD data registers, 50 bytes are for peripheral control and data registers, 16 bytes are used as a shared working registers, and 1024 registers are for general-purpose use, page 0 -page 4 (in case of S3C8245/P8245, page 0-page 2).

You can always address set 1 register locations, regardless of which of the four register pages is currently selected. Set 1 locations, however, can only be addressed using register addressing modes.

The extension of register space into separately addressable areas (sets, banks, and pages) is supported by various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register page pointer (PP).

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-1. S3C8249/P8249 Register Type Summary

Register Type	Number of Bytes
General-purpose registers (including the 16-byte common	1,040
working register area, four 192-byte prime register area,	
and four 64-byte set 2 area)	16
LCD data registers	16
CPU and system control registers	50
Mapped clock, peripheral, I/O control, and data registers	1,122
Total Addressable Bytes	

Table 2-2. S3C8245/P8245 Register Type Summary

Register Type	Number of Bytes
General-purpose registers (including the 16-byte common	528
working register area, four 192-byte prime register area,	
and four 64-byte set 2 area)	16
LCD data registers	16
CPU and system control registers	50
Mapped clock, peripheral, I/O control, and data registers	610
Total Addressable Bytes	

Figure 2-2. Internal Register File Organization

REGISTER PAGE POINTER (PP)

The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using an 8 -bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by the register page pointer (PP, DFH). In the S3C8245/C8249 microcontroller, a paged register file expansion is implemented for LCD data registers, and the register page pointer must be changed to address other pages.

After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always " 0000 ", automatically selecting page 0 as the source and destination page for register addressing.

Figure 2-3. Register Page Pointer (PP)

+ PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)

RAMCL0	LD	PP,\#00H	Destination $\leftarrow 0$, Source $\leftarrow 0$
	SRP	\#OCOH	
	LD	R0,\#0FFH	Page 0 RAM clear starts
	CLR	@R0	
	DJNZ	R0,RAMCLO	
	CLR	@R0	$\mathrm{RO}=00 \mathrm{H}$
RAMCL1	LD	PP,\#10H	Destination $\leftarrow 1$, Source $\leftarrow 0$
	LD	R0,\#0FFH	Page 1 RAM clear starts
	CLR	@R0	
	DJNZ	R0,RAMCL1	
	CLR	@R0	$\mathrm{RO}=00 \mathrm{H}$

NOTE: You should refer to page 6-39 and use DJNZ instruction properly when DJNZ instruction is used in your program.

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations $\mathrm{COH}-\mathrm{FFH}$.
The upper 32-byte area of this 64-byte space (EOH-FFH) is expanded two 32-byte register banks, bank 0 and bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware reset operation always selects bank 0 addressing.

The upper two 32 -byte areas (bank 0 and bank 1) of set 1 ($\mathrm{EOH}-\mathrm{FFH}$) contains 50 mapped system and peripheral control registers. The lower 32-byte area contains 16 system registers (DOH-DFH) and a 16-byte common working register area (COH-CFH). You can use the common working register area as a "scratch" area for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte working register area can only be accessed using working register addressing (For more information about working register addressing, please refer to Chapter 3, "Addressing Modes.")

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations COH-FFH is logically duplicated to add another 64 bytes of register space. This expanded area of the register file is called set 2. For the S3C8249, the set 2 address range ($\mathrm{COH}-\mathrm{FFH}$) is accessible on pages $0-3$.
S3C8245, the set 2 address range ($\mathrm{COH}-\mathrm{FFH}$) is accessible on pages 0-1.
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

PRIME REGISTER SPACE

The lower 192 bytes (00H-BFH) of the S3C8245/C8249's four or two 256-byte register pages is called prime register area. Prime registers can be accessed using any of the seven addressing modes (see Chapter 3, "Addressing Modes.")

The prime register area on page 0 is immediately addressable following a reset. In order to address prime registers on pages $0,1,2,3$, or 4 you must set the register page pointer (PP) to the appropriate source and destination values.

Figure 2-4. Set 1, Set 2, Prime Area Register, and LCD Data Register Map

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8 -bit address fields. When 4 -bit working register addressing is used, the 256 -byte register file can be seen by the programmer as one that consists of 328 -byte register groups or "slices." Each slice comprises of eight 8-bit registers.

Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to form a 16-byte working register block. Using the register pointers, you can move this 16 -byte register block anywhere in the addressable register file, except the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected working register spaces:

- One working register slice is 8 bytes (eight 8-bit working registers, R0-R7 or R8-R15)
- One working register block is 16 bytes (sixteen 8-bit working registers, R0-R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file. The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.

After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (COH-CFH).

Figure 2-5. 8-Byte Working Register Areas (Slices)

USING THE REGISTER POINTS

Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable 8-byte working register slices in the register file. After a reset, they point to the working register common area: RP0 points to addresses $\mathrm{COH}-\mathrm{C} 7 \mathrm{H}$, and RP1 points to addresses $\mathrm{C} 8 \mathrm{H}-\mathrm{CFH}$.

To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction. (see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in set 2, $\mathrm{COH}-\mathrm{FFH}$, because these locations can be accessed only using the Indirect Register or Indexed addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8 -byte slices. As a general programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can flexibly define the working register area to support program requirements.

PROGRAMMING TIP - Setting the Register Pointers

SRP	\#70H	$; R P 0 \leftarrow 70 \mathrm{H}, \mathrm{RP} 1 \leftarrow 78 \mathrm{H}$
SRP1	\#48H	$; R P 0 \leftarrow$ no change, RP1 $\leftarrow 48 \mathrm{H}$,
SRP0	\#0A0H	$; R P 0 \leftarrow$ A0H, RP1 \leftarrow no change
CLR	RP0	$; R P 0 \leftarrow 00 \mathrm{H}, \mathrm{RP} 1 \leftarrow$ no change
LD	RP1,\#0F8H	$; R P 0 \leftarrow$ no change, RP1 $\leftarrow 0$ 0F8H

Figure 2-6. Contiguous 16-Byte Working Register Block

Figure 2-7. Non-Contiguous 16-Byte Working Register Block

+ PROGRAMMING TIP - Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers $80 \mathrm{H}-85 \mathrm{H}$ using the register pointer. The register addresses from 80 H through 85 H contain the values $10 \mathrm{H}, 11 \mathrm{H}, 12 \mathrm{H}, 13 \mathrm{H}, 14 \mathrm{H}$, and 15 H , respectively:

SRP0	$\# 80 H$	$; R P 0 \leftarrow 80 H$
ADD	$R 0, R 1$	$; R 0 \leftarrow R 0+R 1$
ADC	$R 0, R 2$	$; R 0 \leftarrow R 0+R 2+C$
ADC	$R 0, R 3$	$; R 0 \leftarrow R 0+R 3+C$
ADC	$R 0, R 4$	$; R 0 \leftarrow R 0+R 4+C$
ADC	$R 0, R 5$	$R 0 \leftarrow R 0+R 5+C$

The sum of these six registers, 6 FH , is located in the register $\mathrm{R} 0(80 \mathrm{H})$. The instruction string used in this example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to calculate the sum of these registers, the following instruction sequence would have to be used:

ADD	$80 \mathrm{H}, 81 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(81 \mathrm{H})$
ADC	$80 \mathrm{H}, 82 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(82 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 83 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(83 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 84 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(84 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 85 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(85 \mathrm{H})+\mathrm{C}$

Now, the sum of the six registers is also located in register 80 H . However, this instruction string takes 15 bytes of instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, you can access any location in the register file except for set 2 . With working register addressing, you use a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register pair, the address of the first 8-bit register is always an even number and the address of the next register is always an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and the least significant byte is always stored in the next $(+1)$ odd-numbered register.

Working register addressing differs from Register addressing as it uses a register pointer to identify a specific 8-byte working register space in the internal register file and a specific 8-bit register within that space.

Figure 2-8. 16-Bit Register Pair

Figure 2-9. Register File Addressing

COMMON WORKING REGISTER AREA (COH-CFH)

After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations $\mathrm{COH}-$ CFH, as the active 16-byte working register block:

$$
\begin{aligned}
& \mathrm{RP0} \rightarrow \mathrm{C} 0 \mathrm{H}-\mathrm{C} 7 \mathrm{H} \\
& \mathrm{RP} 1 \rightarrow \mathrm{C} 8 \mathrm{H}-\mathrm{CFH}
\end{aligned}
$$

This 16 -byte address range is called common area. That is, locations in this area can be used as working registers by operations that address any location on any page in the register file. Typically, these working registers serve as temporary buffers for data operations between different pages.

Figure 2-10. Common Working Register Area

+ PROGRAMMING TIP - Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations $\mathrm{COH}-\mathrm{CFH}$, using working register addressing mode only.

Examples 1. LD $0 \mathrm{C} 2 \mathrm{H}, 40 \mathrm{H}$; Invalid addressing mode!
Use working register addressing instead:
SRP \#OCOH
LD \quad R2,40H $\quad ; \quad \mathrm{R} 2(\mathrm{C} 2 \mathrm{H}) \rightarrow$ the value in location 40 H
2. ADD 0C3H,\#45H ; Invalid addressing mode!

Use working register addressing instead:
SRP \#OCOH
ADD \quad R3, \#45H $\quad ; \quad \mathrm{R} 3(\mathrm{C} 3 \mathrm{H}) \rightarrow \mathrm{R} 3+45 \mathrm{H}$

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in a register pointer serves as an addressing "window" that makes it possible for instructions to access working registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register area, the address bits are concatenated in the following way to form a complete 8-bit address:
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).

- The five high-order bits in the register pointer select an 8-byte slice of the register space.
- The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are concatenated with the three low-order bits from the instruction address to form the complete address. As long as the address stored in the register pointer remains unchanged, the three bits from the address will always point to an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction "INC R6" is " 0 ", which selects RP0. The five high-order bits stored in RP0 (01110 B) are concatenated with the three low-order bits of the instruction's 4-bit address (110B) to produce the register address $76 \mathrm{H}(01110110 \mathrm{~B})$.

Figure 2-11. 4-Bit Working Register Addressing

Figure 2-12. 4-Bit Working Register Addressing Example

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To initiate 8 -bit working register addressing, the upper four bits of the instruction address must contain the value "1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction address (1100B) specify 8 -bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register address (011) are provided by the three low-order bits of the 8 -bit instruction address. The five address bits from RP1 and the three address bits from the instruction are concatenated to form the complete register address, OABH (10101011B).

Figure 2-13. 8-Bit Working Register Addressing

Figure 2-14. 8-Bit Working Register Addressing Example

SYSTEM AND USER STACK

The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH and POP instructions are used to control system stack operations. The S3C8245/C8249 architecture supports stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to their original locations. The stack address value is always decreased by one before a push operation and increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure 2-15.

Figure 2-15. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI, PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)

Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations. The most significant byte of the SP address, SP15-SP8, is stored in the SPH register (D8H), and the least significant byte, SP7-SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in the S3C8245/C8249, the SPL must be initialized to an 8-bit value in the range $00 \mathrm{H}-\mathrm{FFH}$. The SPH register is not needed and can be used as a general-purpose register, if necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the register file), you can use the SPH register as a general-purpose data register. However, if an overflow or underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register, overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can initialize the SPL value to "FFH" instead of "00H".

+ PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and POP instructions:

NOTES

3

ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to determine the location of the data operand. The operands specified in SAM88RC instructions may be condition codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are available for each instruction. The seven addressing modes and their symbols are:

- Register (R)
- Indirect Register (IR)
- Indexed (X)
- Direct Address (DA)
- Indirect Address (IA)
- Relative Address (RA)
- Immediate (IM)

REGISTER ADDRESSING MODE (R)

In Register addressing mode (R), the operand value is the content of a specified register or register pair (see Figure 3-1).

Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).

Figure 3-1. Register Addressing

Figure 3-2. Working Register Addressing

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand. Depending on the instruction used, the actual address may point to a register in the register file, to program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to indirectly address another memory location. Please note, however, that you cannot access locations COH-FFH in set 1 using the Indirect Register addressing mode.

Sample Instruction:
RL @SHIFT ; Where SHIFT is the label of an 8-bit register address

Figure 3-3. Indirect Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-4. Indirect Register Addressing to Program Memory

INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-5. Indirect Working Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Concluded)

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access locations in the internal register file or in external memory. Please note, however, that you cannot access locations C0H-FFH in set 1 using Indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range -128 to +127 . This applies to external memory accesses only (see Figure 3-8.)

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in a working register. For external memory accesses, the base address is stored in the working register pair designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address (see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction (LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for external data memory, when implemented.

Figure 3-7. Indexed Addressing to Register File

s^MSUNE

INDEXED ADDRESSING MODE (Continued)

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

INDEXED ADDRESSING MODE (Concluded)

Figure 3-9. Indexed Addressing to Program or Data Memory

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Sample Instructions:

LDC	$\mathrm{R} 5,1234 \mathrm{H}$;The values in the program address $(1234 \mathrm{H})$ are loaded into register R5.
LDE	$\mathrm{R} 5,1234 \mathrm{H}$	Identical operation to LDC example, except that external program memory is accessed.

Figure 3-10. Direct Addressing for Load Instructions

DIRECT ADDRESS MODE (Continued)

Figure 3-11. Direct Addressing for Call and Jump Instructions

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program memory. The selected pair of memory locations contains the actual address of the next instruction to be executed. Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are assumed to be all zeros.

Sample Instruction:
CALL \#40H ; The 16-bit value in program memory addresses 40 H and 41 H is the subroutine start address.

Figure 3-12. Indirect Addressing

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a twos-complement signed displacement between -128 and +127 is specified in the instruction. The displacement value is then added to the current PC value. The result is the address of the next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

Figure 3-13. Relative Addressing

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing mode is useful for loading constant values into registers.
\square
Figure 3-14. Immediate Addressing

4

CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C8245/C8249 control registers are presented in an easy-to-read format. You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates the important features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed information about control registers is presented in the context of the specific peripheral hardware descriptions in Part II of this manual.

Data and counter registers are not described in detail in this reference chapter. More information about all of the registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this manual.

The locations and read/write characteristics of all mapped registers in the S3C8245/C8249 register file are listed in Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "nRESET and Power-Down."

Table 4-1. Set 1 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
LCD control register	LCON	208	D0H	R/W
LCD mode register	LMOD	209	D1H	R/W
Interrupt pending register	INTPND	210	D2H	R/W
Basic timer control register	BTCON	211	D3H	R/W
Clock control register	CLKCON	212	D4H	R/W
System flags register	FLAGS	213	D5H	R/W
Register pointer 0	RP0	214	D6H	R/W
Register pointer 1	RP1	215	D7H	R/W
Stack pointer (high byte)	SPH	216	D8H	R/W
Stack pointer (low byte)	SPL	217	D9H	R/W
Instruction pointer (high byte)	IPH	218	DAH	R/W
Instruction pointer (low byte)	IPL	219	DBH	R/W
Interrupt request register	IRQ	220	DCH	R
Interrupt mask register	IMR	221	DDH	R/W
System mode register	SYM	222	DEH	R/W
Register page pointer	PP	223	DFH	R/W

Table 4-2. Set 1, Bank 0 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Port 0 control High register	P0CONH	224	EOH	R/W
Port 0 control Low register	P0CONL	225	E1H	R/W
Port 0 interrupt control register	POINT	226	E2H	R/W
Port 0 interrupt pending register	POPND	227	E3H	R/W
Port 1 control High register	P1CONH	228	E4H	R/W
Port 1 control Low register	P1CONL	229	E5H	R/W
Port 2 control High register	P2CONH	230	E6H	R/W
Port 2 control Low register	P2CONL	231	E7H	R/W
Port 3 control High register	P3CONH	232	E8H	R/W
Port 3 control Low register	P3CONL	233	E9H	R/W
Timer B data register (high byte)	TBDATAH	234	EAH	R/W
Timer B data register (low byte)	TBDATAL	235	EBH	R/W
Timer B control register	TBCON	236	ECH	R/W
Timer A control register	TACON	237	EDH	R/W
Timer A counter register	TACNT	238	EEH	R
Timer A data register	TADATA	239	EFH	R/W
Serial I/O control register	SIOCON	240	FOH	R/W
Serial I/O data register	SIODATA	241	F1H	R/W
Serial I/O pre-scale register	SIOPS	242	F2H	R/W
Oscillator control register	OSCCON	243	F3H	R/W
STOP control register	STPCON	244	F4H	R/W
Port 1 pull-up control register	P1PUP	245	F5H	R/W
Port 0 data register	P0	246	F6H	R/W
Port 1 data register	P1	247	F7H	R/W
Port 2 data register	P2	248	F8H	R/W
Port 3 data register	P3	249	F9H	R/W
Port 4 data register	P4	250	FAH	R/W
Port 5 data register	P5	251	FBH	R/W
Location FCH is factory use only.				
Basic timer data register	BTCNT	253	FDH	R
External memory timing register	EMT	254	FEH	R/W
Interrupt priority register	IPR	255	FFH	R/W

Table 4-3. Set 1, Bank 1 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Locations EOH-EBH is not mapped.				
Port 4 control High register	P4CONH	236	ECH	R/W
Port 4 control Low register	P4CONL	237	EDH	R/W
Port 5 control High register	P5CONH	238	EEH	R/W
Port 5 control Low register	P5CONL	239	EFH	R/W
Locations FOH is factory use only.				
Timer 0 control register	TOCON	241	F1H	R/W
Timer 0 counter register (high byte)	TOCNTH	242	F2H	R
Timer 0 counter register (low byte)	TOCNTL	243	F3H	R
Timer 0 data register (high byte)	TODATAH	244	F4H	R/W
Timer 0 data register (low byte)	TODATAL	245	F5H	R/W
Voltage level detector control register	VLDCON	246	F6H	R/W
A/D converter control register	ADCON	247	F7H	R/W
A/D converter data register (high byte)	ADDATAH	248	F8H	R/W
A/D converter data register (low byte)	ADDATAL	249	F9H	R/W
Watch timer control register	WTCON	250	FAH	R/W
Timer 1 control register	T1CON	251	FBH	R/W
Timer 1 counter register (high byte)	T1CNTH	252	FCH	R
Timer 1 counter register (low byte)	T1CNTL	253	FDH	R
Timer 1 data register (high byte)	T1DATAH	254	FEH	R/W
Timer 1 data register (low byte)	T1DATAL	255	FFH	R/W

Figure 4-1. Register Description Format

ADCON - A/D Converter Control Register

F7H Set 1, Bank 1

Bit Identifier nRESET Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	. $\mathbf{1}$. $\mathbf{0}$
-	0	0	0	0	0	0	0
-	R/W	R/W	R/W	R	R/W	R/W	R/W

Register addressing mode only
.7
Not used for the S3C8245/C8249
.6-. 4
. 3
End-of-Conversion bit (read-only)

0	Conversion not complete
1	Conversion complete

.2-. 1
Clock Source Selection Bits

0	0	$\mathrm{fxx} / 16$
0	1	$\mathrm{fxx} / 8$
1	0	$\mathrm{fxx} / 4$
1	1	fxx

. 0
Start or Enable Bit

0	Disable operation
1	Start operation

Bit Identifier	. 7				. 5	. 4	. 3	. 2	. 1	. 0
nRESET Value	0		0		0	0	0	0	0	0
Read/Write	R/W		R/W		R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register addressing mode only									
.7-. 4	Watchdog Timer Function Disable Code (for System Reset)									
	1	0	1	0	Disable watchdog timer function					
	Others				Enable watchdog timer function					

Basic Timer Input Clock Selection Bits

0	0	$\mathrm{fxx} / 4096{ }^{(3)}$
0	1	$\mathrm{fxx} / 1024$
1	0	$\mathrm{fxx} / 128$
1	1	$\mathrm{fxx} / 16$

.1
Basic Timer Counter Clear Bit (1)

0	No effect
1	Clear the basic timer counter value

. 0
Clock Frequency Divider Clear Bit for Basic Timer and Timer/Counters ${ }^{(2)}$

0	No effect
1	Clear both clock frequency dividers

NOTES:

1. When you write a " 1 " to BTCON. 1 , the basic timer counter value is cleared to " 00 H ". Immediately following the write operation, the BTCON. 1 value is automatically cleared to " 0 ".
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to " 00 H ". Immediately following the write operation, the BTCON. 0 value is automatically cleared to " 0 ".
3. The fxx is selected clock for system (main OSC. or sub OSC.).

CLKCON — System Clock Control Register

Bit Identifier nRESET Value Read/Write

Addressing Mode

.7-. 5
Not used for the S3C8245/C8249
.4-. 3
CPU Clock (System Clock) Selection Bits ${ }^{\text {(note) }}$

0	0	$\mathrm{fxx} / 16$
0	1	$\mathrm{fxx} / 8$
1	0	$\mathrm{fxx} / 2$
1	1	fxx

.2-. 0
Not used for the S3C8245/C8249
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the appropriate values to CLKCON. 3 and CLKCON. 4 .

EMT - External Memory Timing Register
FEH Set 1, Bank 0

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
.7-. 0
Not used for the S3C8245/C8249

Bit Identifier nRESET Value Read/Write
Addressing Mode
. 7
Register addressing mode only

Carry Flag (C)

0	Operation does not generate a carry or borrow condition
1	Operation generates a carry-out or borrow into high-order bit 7

. 6
Zero Flag (Z)

0	Operation result is a non-zero value
1	Operation result is zero

. 5
Sign Flag (S)

0	Operation generates a positive number $(\mathrm{MSB}=" 0 ")$
1	Operation generates a negative number $(\mathrm{MSB}=" 1 ")$

. 4
Overflow Flag (V)

0	Operation result is $\leq+127$ or ≥-128
1	Operation result is $>+127$ or <-128

. 3
Decimal Adjust Flag (D)

0	Add operation completed
1	Subtraction operation completed

. 2
Half-Carry Flag (H)

0	No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction
1	Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

.1
Fast Interrupt Status Flag (FIS)

0	Interrupt return (IRET) in progress (when read)
1	Fast interrupt service routine in progress (when read)

. 0
Bank Address Selection Flag (BA)

0	Bank 0 is selected
1	Bank 1 is selected

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
.7
. 6
Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.0-0.3

0	Disable (mask)
1	Enable (unmask)

. 5
Interrupt Level 5 (IRQ5) Enable Bit; Watch Timer Overflow

0	Disable (mask)
1	Enable (unmask)

Interrupt Level 4 (IRQ4) Enable Bit; SIO Interrupt

0	Disable (mask)
1	Enable (unmask)

. 3
Interrupt Level 3 (IRQ3) Enable Bit; Timer 1 Match/Capture or Overflow

0	Disable (mask)
1	Enable (unmask)

. 2
Interrupt Level 2 (IRQ2) Enable Bit; Timer 0 Match

0	Disable (mask)
1	Enable (unmask)

. 1
Interrupt Level 1 (IRQ1) Enable Bit; Timer B Match

0	Disable (mask)
1	Enable (unmask)

. 0
Interrupt Level 0 (IRQ0) Enable Bit; Timer A Match/Capture or Overflow

0	Disable (mask)
1	Enable (unmask)

NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.

INTPND - Interrupt Pending Register
D2H
Set 1

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
Register addressing mode only
.7-. 3
Not used for the S3C8245/C8249
. 2
Timer 1 Overflow Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

.1
Timer 1 Match/Capture Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

. 0
Timer A Overflow Interrupt Pending bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

IPH — Instruction Pointer (High Byte)
DAH
Set 1

Bit Identifier nRESET Value

Read/Write

.7	.6	.5	.4	.3	.2	.1	.0
x	x	x	x	x	x	x	x
R/W							
Register addressing mode only							

Instruction Pointer Address (High Byte)

The high-byte instruction pointer value is the upper eight bits of the 16 -bit instruction pointer address (IP15-IP8). The lower byte of the IP address is located in the IPL register (DBH).

IPL — Instruction Pointer (Low Byte)

Bit Identifier nRESET Value Read/Write

Addressing Mode
.7-. 0

.7	.6	.5	.4	.3	.2	.1	.0
x							
R/W	R / W						

Register addressing mode only

Instruction Pointer Address (Low Byte)
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction pointer address (IP7-IP0). The upper byte of the IP address is located in the IPH register (DAH).

IPR — Interrupt Priority Register

FFH
Set 1, Bank 0
Bit Identifier
nRESET Value
Read/Write
Addressing Mode
Register addressing mode only
.7, .4, and . 1
Priority Control Bits for Interrupt Groups A, B, and C

0	0	0	Group priority undefined
0	0	1	B $>$ C $>$ A
0	1	0	A $>$ B $>$ C
0	1	1	B $>$ A $>$ C
1	0	0	C $>$ A $>$ B
1	0	1	C $>$ B $>$ A
1	1	0	A $>$ C $>$ B
1	1	1	Group priority undefined

. 6
Interrupt Subgroup C Priority Control Bit

0	IRQ6 $>$ IRQ7
1	IRQ7 $>$ IRQ6

. 5
Interrupt Group C Priority Control Bit

0	IRQ5 $>($ IRQ6, IRQ7)
1	$($ IRQ6, IRQ7) $>\operatorname{IRQ5}$

. 3
Interrupt Subgroup B Priority Control Bit

0	IRQ3 $>\mathrm{IRQ4}$
1	IRQ4 $>\mathrm{IRQ} 3$

. 2
Interrupt Group B Priority Control Bit

0	$\mathrm{IRQ2}>(\mathrm{IRQ3}, \mathrm{IRQ4})$
1	$(\mathrm{IRQ} 3, \mathrm{IRQ4})>\mathrm{IRQ} 2$

. 0
Interrupt Group A Priority Control Bit

0	IRQ0 $>\mathrm{IRQ1}$
1	$\mathrm{IRQ1}>\mathrm{IRQ0}$

IRQ - Interrupt Request Register
DCH
Set 1

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
Register addressing mode only
. 7
Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.4-0.7

0	Not pending
1	Pending

Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.0-0.3

0	Not pending
1	Pending

Level 5 (IRQ5) Request Pending Bit; Watch Timer Overflow

0	Not pending
1	Pending

Level 4 (IRQ4) Request Pending Bit; SIO Interrupt

0	Not pending
1	Pending

Level 3 (IRQ3) Request Pending Bit; Timer 1 Match/Capture or Overflow

0	Not pending
1	Pending

Level 2 (IRQ2) Request Pending Bit; Timer 0 Match

0	Not pending
1	Pending

Level 1 (IRQ1) Request Pending Bit; Timer B Match

0	Not pending
1	Pending

. 0
Level 0 (IRQO) Request Pending Bit; Timer A Match/Capture or Overflow

0	Not pending
1	Pending

LCON - LCD Control Register

Bit Identifier
nRESET Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	. $\mathbf{2}$. $\mathbf{1}$.0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W
Register addressing mode only							

LCD Output Segment and Pin Configuration Bits

0	P5.4-P5.7 I/O is selected
1	SEG28-SEG31 is selected, P5.4-P5.7 I/O is disabled

. 6
LCD Output Segment and Pin Configuration Bits

0	P5.0-P5.3 I/O is selected
1	SEG24-SEG27 is selected, P5.0-P5.3 I/O is disabled

. 5
LCD Output Segment and Pin Configuration Bits

0	$\mathrm{P} 4.4-\mathrm{P} 4.7 \mathrm{I} / \mathrm{O}$ is selected
1	SEG20-EG23 is selected, P4.4-P4.7 I/O is disabled

. 4
LCD Output Segment and Pin Configuration Bits

0	$\mathrm{P} 4.0-\mathrm{P} 4.3 \mathrm{I} / \mathrm{O}$ is selected
1	SEG16-SEG19 is selected, P4.0-P4.3 I/O is disabled

.3
Not used for the S3C8245/C8249
. 2
LCD Bias Voltage Selection Bit

0	Enable LCD initial circuit (internal bias voltage)
1	Disable LCD initial circuit for external LCD driving resister (external bias voltage)

.1
Voltage Booster Enable/disable Bit

0	Stop voltage booster (Clock stop and cut off current charge path)
1	Run voltage booster (Clock run current and turn on charge path)

. 0

LCD Display Control Bit

0	$\begin{array}{l}\text { LCD output low; turn display off, COM and SEG output low cut off voltage booster } \\ \text { (Booster clock disable) }\end{array}$

1	COM and SEG output is in display mode; turn display on

LMOD - LCD Mode Control Register
D1H
Set 1

Bit Identifier nRESET Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
-	-	R/W	R/W	R/W	R/W	R/W	R/W

Register addressing mode only
.7-. 6
Not used for the S3C8245/C8249
.5-. 4
LCD Clock (LCDCK) Frequency Selection Bits

0	0	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{9}=64 \mathrm{~Hz}$
0	1	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{8}=128 \mathrm{~Hz}$
1	0	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{7}=256 \mathrm{~Hz}$
1	1	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{6}=512 \mathrm{~Hz}$

.3-. 0
Duty and Bias Selection for LCD Display

0	x	x	x	LCD display off (COM and SEG output low)
1	0	0	0	$1 / 4$ duty, $1 / 3$ bias
1	0	0	1	$1 / 3$ duty, $1 / 3$ bias
1	0	1	1	$1 / 3$ duty, $1 / 2$ bias
1	0	1	0	$1 / 2$ duty, $1 / 2$ bias
1	1	x	x	Static

OSCCON - Oscillator Control Register

F3H Set 1,Bank 0

Bit Identifier nRESET Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	R / W	R / W	R / W	-	R / W

Register addressing mode only
.7-. 5
Not used for the S3C8245/C8249
. 4
Sub-system Oscillator Driving Ability Control Bit

0	Strong driving ability
1	Normal driving ability

. 3
Main System Oscillator Control Bit

0	Main System Oscillator RUN
1	Main System Oscillator STOP

. 2
Sub System Oscillator Control Bit

0	Sub system oscillator RUN
1	Sub system oscillator STOP

.1
Not used for the S3C8245/C8249
.0
System Clock Selection Bit

0	Main oscillator select
1	Subsystem oscillator select

NOTE: When OSCCON. 4 is set to " 0 ", Sub operating current and sub idle current are large.

POCONH — Port 0 Control Register (High Byte)

Bit Identifier nRESET Value

Read/Write
Addressing Mode
.7-. 6
.5-. 4

P0.5/NT5

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

.1-. 0
P0.7/INT7

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

P0.6/INT6

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

P0.4/INT4

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

Bit Identifier nRESET Value Read/Write
Addressing Mode
.7-. 6
P0.3/INT3

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

P0.2/INT2

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

P0.1/INT1

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

.1-. 0
P0.0/INTO

0	0	Schmitt trigger input mode; pull-up ; interrupt on falling edge
0	1	Schmitt trigger input mode; interrupt on rising edge
1	0	Schmitt trigger input mode; interrupt on rising or falling edge
1	1	Output mode, push-pull

Bit Identifier nRESET Value Read/Write
Addressing Mode . 7
. 6
Register addressing mode only

P0.7 External Interrupt (INT7) Enable Bit

0	Disable interrupt
1	Enable interrupt

P0.6 External Interrupt (INT6) Enable Bit

0	Disable interrupt
1	Enable interrupt

. 5
P0.5 External Interrupt (INT5) Enable Bit

0	Disable interrupt
1	Enable interrupt

. 4
P0.4 External Interrupt (INT4) Enable Bit

0	Disable interrupt
1	Enable interrupt

P0.3 External Interrupt (INT3) Enable Bit

0	Disable interrupt
1	Enable interrupt

P0.2 External Interrupt (INT2) Enable Bit

0	Disable interrupt
1	Enable interrupt

P0.1 External Interrupt (INT1) Enable Bit

0	Disable interrupt
1	Enable interrupt

. 0
P0.0 External Interrupt (INTO) Enable Bit

0	Disable interrupt
1	Enable interrupt

Bit Identifier
nRESET Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$	$\mathbf{. 2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

P0.7/INT7 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.6/INT6 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.5/INT5 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.4/INT4 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.3/INT3 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.2/INT2 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P0.1/INT1 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

P1CONH — Port 1 Control Register (High Byte)

E4H Set 1, Bank 0

Bit Identifier nRESET Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

Register addressing mode only
.7-. 6
P1.7/SI

0	0	Input mode (SI)
0	1	Output mode, open-drain
1	0	Alternative function (push-pull output)
1	1	Output mode, push-pull

.5-. 4
P1.6/SCK

0	0	Input mode (SCK)
0	1	Output mode, open-drain
1	0	Alternative function (SCK out)
1	1	Output mode, push-pull

P1.5/SO

0	0	Input mode
0	1	Output mode, open-drain
1	0	Alternative function (SO)
1	1	Output mode, push-pull

.1-. 0
P1.4/BUZ

0	0	Input mode
0	1	Output mode, open-drain
1	0	Alternative function (BUZ)
1	1	Output mode, push-pull

P1CONL — Port 1 Control Register (Low Byte)
E5H Set 1, Bank 0

Bit Identifier nRESET Value Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

.7-. 6

Register addressing mode only

P1.3

0	0	Input mode
0	1	Output mode, open-drain
1	0	Alternative function (push-pull output mode)
1	1	Output mode, push-pull

.5-. 4
P1.2/T10UT/T1PWM

0	0	Input mode
0	1	Output mode, open-drain
1	0	Alternative function (T1OUT, T1PWM)
1	1	Output mode, push-pull

P1.1/T1CLK

0	0	Input mode (T1CLK)
0	1	Output mode, open-drain
1	0	Alternative function (push-pull output mode)
1	1	Output mode, push-pull

P1.0/T1CAP

0	0	Input mode (T1CAP)
0	1	Output mode, open-drain
1	0	Alternative function (push-pull output mode)
1	1	Output mode, push-pull

P1PUP - Port 1 Pull-up Control Register

F5H Set 1, Bank 0

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
. 7

.7	.6	.5	.4	.3	.2	. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

Register addressing mode only

P1.7 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

. 6
P1.6 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

. 5
P1.5 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

. 4
P1.4 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

. 3
P1.3 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

.2
P1.2 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

.1
P1.1 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

P1.0 Pull-up Resistor Enable Bit

0	Pull-up disable
1	Pull-up enable

P2CONH — Port 2 Control Register (High Byte)

E6H
Set 1, Bank 0

Bit Identifier nRESET Value
Read/Write
Addressing Mode

.7	.6	.5	.4	$\mathbf{. 3}$. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

Register addressing mode only
.7-. 6
P2.7/VLDREF/ADC7

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC \& VLD mode)
1	1	Output mode, push-pull

.5-. 4
.3-. 2
.1-. 0
P2.4/ ADC4

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC mode)
1	1	Output mode, push-pull

P2CONL — Port 2 Control Register (Low Byte)

E7H
Set 1, Bank 0

Bit Identifier nRESET Value Read/Write
Addressing Mode
.7-. 6
.5-. 4
.3-. 2
.1-. 0

$\mathbf{. 7}$	$\mathbf{. 6}$.5	.4	$\mathbf{. 3}$. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

Register addressing mode only

P2.3/ADC3

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC mode)
1	1	Output mode, push-pull

P2.2/ADC2

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC mode)
1	1	Output mode, push-pull

P2.1/ADC1

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC mode)
1	1	Output mode, push-pull

P2.0/ADC0

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (ADC mode)
1	1	Output mode, push-pull

P3CONH — Port 3 Control Register (High Byte)

E8H
Set 1, Bank 0

Bit Identifier nRESET Value

Read/Write

Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	-	-	-	R/W	R/W

Register addressing mode only

$$
\text { .7-. } 2
$$

Not used for the S3C8245/C8249
.1-. 0
P3.4 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	x	Output mode, push-pull

P3CONL - Port 3 Control Register (Low Byte)
E9H Set 1, Bank 0
Bit Identifier nRESET Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 6
P3.3/TACAP Mode Selection Bits

0	0	Input mode (TACAP)
0	1	Input mode, pull-up (TACAP)
1	0	Output mode, push-pull
1	1	Output mode, push-pull

.5-. 4
.3-. 2
.1-. 0

P3.2/TACLK Mode Selection Bits

0	0	Input mode (TACLK)
0	1	Input mode, pull-up
1	0	Output mode, push-pull
1	1	Output mode, push-pull

P3.1/TAOUT/TAPWM Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (TAOUT or TAPWM)
1	1	Output mode, push-pull

P3.0/TBPWM Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Alternative function (TBPWM)
1	1	Output mode, push-pull

P4CONH - Port 4 Control Register (High Byte)

ECH Set 1, Bank 1

Bit Identifier nRESET Value

Read/Write
Addressing Mode
Register addressing mode only

P4.7/SEG23 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

.5-. 4
.3-. 2
.1-. 0

P4.6/SEG22 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P4.5/SEG21 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P4.4/SEG20 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P4CONL - Port 4 Control Register (Low Byte)

EDH Set 1, Bank 1
Bit Identifier nRESET Value
Read/Write
Addressing Mode

. $\mathbf{7}$	$\mathbf{. 6}$	$\mathbf{. 5}$	$\mathbf{. 4}$	$\mathbf{. 3}$	$\mathbf{. 2}$	$\mathbf{. 1}$	$\mathbf{. 0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

P4.3/SEG19 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P4.2/SEG18 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P4.1/SEG17 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

.1-. 0
P4.0/SEG16 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5CONH — Port 5 Control Register (High Byte)

EEH Set 1, Bank 1
Bit Identifier nRESET Value Read/Write
Addressing Mode

$\mathbf{. 7}$	$\mathbf{. 6}$	$\mathbf{. 5}$	$\mathbf{. 4}$	$\mathbf{. 3}$	$\mathbf{. 2}$	$\mathbf{. 1}$	$\mathbf{. 0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

P5.7/SEG31 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

.5-. 4
.3-. 2
.1-. 0

P5.6/SEG30 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5.5/ SEG29 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5.4/ SEG28 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5CONL — Port 5 Control Register (Low Byte)

EFH Set 1, Bank 1
Bit Identifier nRESET Value

Read/Write
Addressing Mode

| $\mathbf{. 7}$ | $\mathbf{. 6}$ | $\mathbf{. 5}$ | $\mathbf{. 4}$ | $\mathbf{. 3}$ | $\mathbf{. 2}$ | $\mathbf{. 1}$ | $\mathbf{. 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 6
.5-. 4
.3-. 2
.1-. 0

P5.3/SEG27 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5.2/SEG26 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5.1/SEG25 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

P5.0/SEG24 Mode Selection Bits

0	0	Input mode
0	1	Input mode, pull-up
1	0	Open-drain output mode
1	1	Push-pull output mode

Bit Identifier	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
nRESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W							
Addressing Mode	Register addressing mode only							

Destination Register Page Selection Bits

0	0	0	0	Destination: page 0
0	0	0	1	Destination: page 1
0	0	1	0	Destination: page 2
0	0	1	1	Destination: page 3
0	1	0	0	Destination: page 4

Source Register Page Selection Bits

0	0	0	0	Source: page 0
0	0	0	1	Source: page 1
0	0	1	0	Source: page 2
0	0	1	1	Source: page 3
0	1	0	0	Source: page 4

NOTE: In the S3CC8249 microcontroller, the internal register file is configured as five pages (Pages 0-4).
The pages $0-3$ are used for general purpose register file, and page 4 is used for LCD data register or general purpose registers.
In case of S3C8245, pages 0-1 are used for general purpose and page 2 is used for LCD data register or general purpose registers.

Bit Identifier

.7	.6	.5	.4	.3	.2	.1	.0
1	1	0	0	0	-	-	-
R/W	R/W	R/W	R/W	R/W	-	-	-

Addressing Mode
.7-. 3
Register addressing only

Register Pointer 0 Address Value

Register pointer 0 can independently point to one of the 256-byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8 -byte register slices at one time as active working register space. After a reset, RP0 points to address COH in register set 1 , selecting the 8 -byte working register slice $\mathrm{COH}-\mathrm{C} 7 \mathrm{H}$.

Addressing Mode

. 7 - .3
. 2 - 0

Register Pointer 1 Address Value
Register pointer 1 can independently point to one of the 256 -byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8 -byte register slices at one time as active working register space. After a reset, RP1 points to address C 8 H in register set 1 , selecting the 8 -byte working register slice C8H-CFH.

Not used for the S3C8245/C8249

SIOCON - sIO Control Register

FOH Set 1, Bank 0

Bit Identifier nRESET Value Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
1	0	0	0	0	0	0	0
R/W							

Register addressing mode only
.7
SIO Shift Clock Selection Bit

0	Internal clock (P.S clock)
1	External clock (SCK)

. 6
Data Direction Control Bit

0	MSB-first mode
1	LSB-first mode

. 5
SIO Mode Selection Bit

0	Receive-only mode
1	Transmit/receive mode

Shift Clock Edge Selection Bit

0	Tx at falling edges, $R x$ at rising edges
1	Tx at rising edges, $R x$ at falling edges

SIO Counter Clear and Shift Start Bit

0	No action
1	Clear 3-bit counter and start shifting

SIO Shift Operation Enable Bit

0	Disable shifter and clock counter
1	Enable shifter and clock counter

SIO Interrupt Enable Bit

0	Disable SIO Interrupt
1	Enable SIO Interrupt

SIO Interrupt Pending Bit

0	No interrupt pending
0	Clear pending condition (when write)
1	Interrupt is pending

SPH - Stack Pointer (High Byte)

Bit Identifier
nRESET Value
Read/Write
Addressing Mode
.7-. 0

Stack Pointer Address (High Byte)

The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer address (SP15-SP8). The lower byte of the stack pointer value is located in register SPL (D9H). The SP value is undefined following a reset.

Bit Identifier nRESET Value Read/Write
Addressing Mode

.7-. 0

.7	.6	.5	.4	.3	.2	.1	.0
x							
R/W							

Register addressing mode only

Stack Pointer Address (Low Byte)
The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer address (SP7-SP0). The upper byte of the stack pointer value is located in register SPH (D8H). The SP value is undefined following a reset.

STPCON - Stop Control Register

F4H Set 1, Bank 0

| Bit Identifier | $\mathbf{. 7}$ | $\mathbf{. 6}$ | $\mathbf{. 5}$ | $\mathbf{. 4}$ | $\mathbf{. 3}$ | $\mathbf{. 2}$ | . $\mathbf{1}$ | $\mathbf{. 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nRESET Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Read/Write | R/W |
| Addressing Mode | Register addressing mode only | | | | | | | |

.7-. 0
STOP Control Bits

10100101	Enable stop instruction
Other values	Disable stop instruction

NOTE: Before execute the STOP instruction, You must set this STPCON register as "10100101b". Otherwise the STOP instruction will not execute.

Fast Interrupt Enable Bit (2)

0	Disable fast interrupt processing
1	Enable fast interrupt processing

. 0
Global Interrupt Enable Bit (3)

0	Disable all interrupt processing
1	Enable all interrupt processing

NOTES:

1. You can select only one interrupt level at a time for fast interrupt processing.
2. Setting SYM. 1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2-SYM.4.
3. Following a reset, you must enable global interrupt processing by executing an El instruction (not by writing a "1" to SYM.0).

Bit Identifier nRESET Value

Read/Write
Addressing Mode
.7-. 5
. 4
Not used for the S3C8245/C8249

Timer 0 Counter Clear Bit

0	No effect
1	Clear the timer 0 counter (when write)

. 2
Timer 0 Counter Enable Bit

0	Disable counting operation
1	Enable counting operation

Timer 0 Interrupt Enable Bit

0	Disable timer 0 interrupt
1	Enable timer 0 interrupt

Timer 0 Interrupt Pending Bit

0	No timer 0 interrupt pending (when read)
0	Clear timer 0 interrupt pending condition (when write)
1	T0 interrupt is pending

Bit Identifier nRESET Value Read/Write
Addressing Mode
.7-. 5
Register addressing mode only
Timer 1 Input Clock Selection Bits

0	0	0	$\mathrm{fxx} / 1024$
0	1	0	$\mathrm{fxx} / 256$
1	0	0	$\mathrm{fxx} / 64$
1	1	0	$\mathrm{fxx} / 8$
0	0	1	$\mathrm{fxx} / 1$
0	1	1	External clock (T1CLK) falling edge
1	0	1	External clock (T1CLK) rising edge
1	1	1	Counter stop

Timer 1 Operating Mode Selection Bits

0	0	Interval mode
0	1	Capture mode (Capture on rising edge, counter running, OVF can occur)
1	0	Capture mode (Capture on falling edge, counter running, OVF can occur)
1	1	PWM mode (OVF \& match interrupt can occur)

. 2
Timer 1 Counter Enable Bit

0	No effect
1	Clear the timer 1 counter (when write)

.1
Timer 1 Match/Capture Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

. 0
Timer 1 Overflow Interrupt Enable

0	Disable overflow interrupt
1	Enable overflow interrupt

TACON - Timer A Control Register
EDH Set 1, Bank 0

Bit Identifier	. 7		. 6	. 5	. 4	. 3	. 2	. 1	. 0
nRESET Value	0		0	0	0	0	0	0	0
Read/Write	R/W		R/W						
Addressing Mode	Register addressing mode only								
.7-. 6	Timer A Input Clock Selection Bits								
	0	0	fxx/1024						
	0	1	fxx/256						
	1	0	fxx/64						
	1	1	External clock (TACLK)						

.5-. 4
.3
. 2
.1
.0

Timer A Operating Mode Selection Bits

0	0	Internal mode (TAOUT mode)
0	1	Capture mode (capture on rising edge, counter running, OVF can occur)
1	0	Capture mode (capture on falling edge, counter running, OVF can occur)
1	1	PWM mode (OVF interrupt can occur)

Timer A Counter Clear Bit

0	No effect
1	Clear the timer A counter (when write)

Timer A Overflow Interrupt Enable Bit

0	Disable overflow interrupt
1	Enable overflow interrupt

Timer A Match/Capture Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

Timer A Match/Capture Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit (write)
1	Interrupt is pending

Bit Identifier nRESET Value Read/Write
Addressing Mode
.7-. 6
Timer B Input Clock Selection Bits

0	0	fxx
0	1	$\mathrm{fxx} / 2$
1	0	$\mathrm{fxx} / 4$
1	1	$\mathrm{fxx} / 8$

.5-. 4
Timer B Interrupt Time Selection Bits

0	0	Elapsed time for low data value
0	1	Elapsed time for high data value
1	0	Elapsed time for low and high data values
1	1	Invalid setting

.3
Timer B Interrupt Enable Bit

0	Disable Interrupt
1	Enable Interrupt

. 2
Timer B Start/Stop Bit

0	Stop timer B
1	Start timer B

.1
Timer B Mode Selection Bit

0	One-shot mode
1	Repeating mode

. 0
Timer B Output flip-flop Control Bit

0	T-FF is low
1	T-FF is high

NOTE: fxx is selected clock for system.

VLDCON - Voltage Level Detector Control Register

F6H
Set 1, Bank 1

Bit Identifier nRESET Value

Read/Write
Addressing Mode
Register addressing mode only
.7-. 5
Not used for the S3C8245/C8249
. 4
$V_{\text {IN }}$ Source Bit

0	Internal source
1	External source

.3
VLD Output Bit

0	$\mathrm{~V}_{\mathbb{N}}>\mathrm{V}_{\text {REF }}$ (when VLD is enabled)
1	$\mathrm{~V}_{\mathbb{N}}<\mathrm{V}_{\text {REF }}$ (when VLD is enabled)

. 2
VLD Enable/disable Bit

0	Disable the VLD
1	Enable the VLD

Detection Level Bits

0	0	$\mathrm{~V}_{\mathrm{VLD}}=2.2 \mathrm{~V}$
0	1	$\mathrm{~V}_{\mathrm{VLD}}=2.4 \mathrm{~V}$
1	0	$\mathrm{~V}_{\mathrm{VLD}}=3.0 \mathrm{~V}$
1	1	$\mathrm{~V}_{\mathrm{VLD}}=4.0 \mathrm{~V}$

WTCON — Watch Timer Control Register
FAH
Set 1, Bank 1

Bit Identifier nRESET Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$. $\mathbf{2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							

Register addressing mode only
. 7
Watch Timer Clock Selection Bit

0	Main system clock divided by 2^{7} (fxx/128)
1	Sub system clock (fxt)

. 6
Watch Timer Interrupt Enable Bit

0	Disable watch timer interrupt
1	Enable watch timer interrupt

.5-. 4
.3-. 2
.1
. 0

Buzzer Signal Selection Bits

0	0	0.5 kHz buzzer (BUZ) signal output
0	1	1 kHz buzzer (BUZ) signal output
1	0	2 kHz buzzer (BUZ) signal output
1	1	4 kHz buzzer (BUZ) signal output

Watch Timer Speed Selection Bits

0	0	0.5 s Interval
0	1	0.25 s interval
1	0	0.125 s Interval
1	1	1.955 ms Interval

Watch Timer Enable Bit

0	Disable watch timer; Clear frequency dividing circuits
1	Enable watch timer

Watch Timer Interrupt Pending Bit

0	Interrupt is not pending, clear pending bit when write
1	Interrupt is pending

NOTE: Watch timer clock frequency (fw) is assumed to be 32.768 kHz .

INTERRUPT STRUCTURE

OVERVIEW

The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one vector address, the vector priorities are established in hardware. A vector address can be assigned to one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight possible interrupt levels: IRQ0-IRQ7, also called level 0-level 7. Each interrupt level directly corresponds to an interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. The S3C8245/C8249 interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector priorities are set in hardware. S3C8245/C8249 uses sixteen vectors.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow. Each vector can have several interrupt sources. In the S3C8245/C8249 interrupt structure, there are sixteen possible interrupt sources.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or cleared "manually" by program software. The characteristics of the source's pending mechanism determine which method would be used to clear its respective pending bit.

INTERRUPT TYPES

The three components of the S3C8 interrupt structure described before - levels, vectors, and sources - are combined to determine the interrupt structure of an individual device and to make full use of its available interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3 . The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1: One level (IRQn) + one vector $\left(\mathrm{V}_{1}\right)+$ one source $\left(\mathrm{S}_{1}\right)$
Type 2: \quad One level $(I R Q n)+$ one vector $\left(V_{1}\right)+$ multiple sources $\left(S_{1}-S_{n}\right)$
Type 3: One level (IRQn) + multiple vectors $\left(V_{1}-V_{n}\right)+$ multiple sources $\left(S_{1}-S_{n}, S_{n+1}-S_{n+m}\right)$
In the S3C8245/C8249 microcontroller, two interrupt types are implemented.

Figure 5-1. S3C8-Series Interrupt Types

S3C8245/C8249 INTERRUPT STRUCTURE

The S3C8245/C8249 microcontroller supports sixteen interrupt sources. All sixteen of the interrupt sources have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the program counter value and status flags are pushed to stack. The starting address of the service routine is fetched from the appropriate vector address (plus the next 8 -bit value to concatenate the full 16 -bit address) and the service routine is executed.

Figure 5-2. S3C8245/C8249 Interrupt Structure

s^MSUNE

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C8245/C8249 interrupt structure are stored in the vector address area of the internal 32-Kbyte ROM, 0H-7FFFH, or 8, 16, 24-Kbyte (see Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100 H .

Figure 5-3. ROM Vector Address Area

Table 5-1. Interrupt Vectors

Vector Address		Interrupt Source	Request		Reset/Clear	
Decimal Value	Hex Value		Interrupt Level	Priority in Level	H/W	S/W
256	100H	Basic timer overflow	Reset	-	\checkmark	
$\begin{aligned} & 226 \\ & 224 \end{aligned}$	$\begin{aligned} & \mathrm{E} 2 \mathrm{H} \\ & \mathrm{EOH} \end{aligned}$	Timer A overflow Timer A match/capture	IRQ0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & V \\ & \sqrt{ } \end{aligned}$	$\begin{aligned} & \bar{V} \\ & \sqrt{ } \end{aligned}$
228	E4H	Timer B match	IRQ1	-	\checkmark	
230	E6H	Timer 0 match	IRQ2	-	\checkmark	\checkmark
$\begin{aligned} & 234 \\ & 232 \end{aligned}$	$\begin{aligned} & \hline \mathrm{EAH} \\ & \mathrm{E} 8 \mathrm{H} \end{aligned}$	Timer 1 overflow Timer 1 match/capture	IRQ3	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \bar{V} \\ & \sqrt{ } \end{aligned}$
236	ECH	SIO interrupt	IRQ4	-		\checkmark
238	EEH	Watch timer overflow	IRQ5	-		\checkmark
$\begin{aligned} & 246 \\ & 244 \\ & 242 \\ & 240 \end{aligned}$	$\begin{aligned} & \text { F6H } \\ & \text { F4H } \\ & \text { F2H } \\ & \text { F0H } \end{aligned}$	P0.3 external interrupt P0.2 external interrupt P0.1 external interrupt P0.0 external interrupt	IRQ6	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & \hline \sqrt{ } \\ & \sqrt{ } \\ & \sqrt{ } \\ & \sqrt{ } \end{aligned}$
$\begin{aligned} & 254 \\ & 252 \\ & 250 \\ & 248 \end{aligned}$	$\begin{aligned} & \text { FEH } \\ & \text { FCH } \\ & \text { FAH } \\ & \text { F8H } \end{aligned}$	P0.7 external interrupt P0.6 external interrupt P0.5 external interrupt P0.4 external interrupt	IRQ7	$\begin{aligned} & \hline 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \sqrt{ } \\ & \sqrt{ } \\ & \sqrt{ } \end{aligned}$

NOTES:

1. Interrupt priorities are identified in inverse order: " 0 " is the highest priority, " 1 " is the next highest, and so on.
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority over one with a higher vector address. The priorities within a given level are fixed in hardware.
3. Timer A or Timer 1 can not service two interrupt sources simultaneously, then only one interrupt source have to be used.

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then serviced as they occur according to the established priorities.

NOTE

The system initialization routine executed after a reset must always contain an El instruction to globally enable the interrupt structure.

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable interrupt processing. The El and DI instructions change the value of bit 0 in the SYM register.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt processing:

- The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.
- The interrupt priority register, IPR, controls the relative priorities of interrupt levels.
- The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to each interrupt source).
- The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable fast interrupts and control the activity of external interface, if implemented).

Table 5-2. Interrupt Control Register Overview

Control Register	ID	R/W	Function Description
Interrupt mask register	IMR	R/W	Bit settings in the IMR register enable or disable interrupt processing for each of the eight interrupt levels: IRQ0-IRQ7.
Interrupt priority register	IPR	R/W	Controls the relative processing priorities of the interrupt levels. The seven levels of S3C8245/C8249 are organized into three groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.
Interrupt request register	IRQ	R	This register contains a request pending bit for each interrupt level.
System mode register	SYM	R/W	This register enables/disables fast interrupt processing, dynamic global interrupt processing, and external interface control (An external memory interface is implemented in the S3C8245/C8249 microcontroller).

NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The system-level control points in the interrupt structure are:

- Global interrupt enable and disable (by El and DI instructions or by direct manipulation of SYM.0)
- Interrupt level enable/disable settings (IMR register)
- Interrupt level priority settings (IPR register)
- Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE

When writing an application program that handles interrupt processing, be sure to include the necessary register file address (register pointer) information.

Figure 5-4. Interrupt Function Diagram

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by the related peripheral (see Table 5-3).

Table 5-3. Interrupt Source Control and Data Registers

Interrupt Source	Interrupt Level	Register(s)	Location(s) in Set 1
Timer A overflow Timer A match/capture	IRQ0	TACON TACINT TADATA	EDH, bank 0 EEH, bank 0 EFH, bank 0
Timer B match	IRQ1	$\begin{aligned} & \text { TBCON } \\ & \text { TBDATAH, TBDATAL } \end{aligned}$	$\begin{aligned} & \text { ECH, bank } 0 \\ & \text { EAH, EBH, bank } 0 \end{aligned}$
Timer 0 match	IRQ2	TOCON, TOCNTH TOCNTL, TODATAH TODATAL	F1H, F2H, bank 1 F3H, F4H, bank 1 F5H, bank 1
Timer 1 overflow Timer 1 match/capture	IRQ3	T1CON T1CNTH T1CNTL T1DATAH T1DATAL	FBH, bank 1 FCH, bank 1 FDH, bank 1 FEH, bank 1 FFH, bank 1
SIO interrupt	IRQ4	SIOCON SIODATA SIOPS	FOH, bank 0 F1H, bank 0 F2H, bank 0
Watch timer overflow	IRQ5	WTCON	FAH, bank 1
P0.3 external interrupt P0.2 external interrupt P0.1 external interrupt P0.0 external interrupt	IRQ6	POCONL POINT POPND	E1H, bank 0 E2H, bank 0 E3H, bank 0
P0.7 external interrupt P0.6 external interrupt P0.5 external interrupt P0.4 external interrupt	IRQ7	POCONH POINT POPND	$\begin{aligned} & \mathrm{E} 0 \mathrm{H}, \text { bank } 0 \\ & \mathrm{E} 2 \mathrm{H}, \text { bank } 0 \\ & \mathrm{E} 3 \mathrm{H}, \text { bank } 0 \end{aligned}$

NOTE: Because the timer 0 overflow interrupt is cleared by hardware, the TOCON register controls only the enable/disable functions. The TOCON register contains enable/disable and pending bits for the timer 0 match/capture interrupt.

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to control fast interrupt processing (see Figure 5-5).

A reset clears SYM.1, and SYM. 0 to " 0 ". The 3-bit value for fast interrupt level selection, SYM. $4-$ SYM. 2 , is undetermined.

The instructions El and DI enable and disable global interrupt processing, respectively, by modifying the bit 0 value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be included in the initialization routine, which follows a reset operation. Although you can manipulate SYM. 0 directly to enable and disable interrupts during the normal operation, it is recommended to use the El and DI instructions for this purpose.

Figure 5-5. System Mode Register (SYM)

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of an interrupt level is cleared to " 0 ", interrupt processing for that level is disabled (masked). When you set a level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1 . Bit values can be read and written by instructions using the Register addressing mode.

Figure 5-6. Interrupt Mask Register (IMR)

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in the microcontroller's interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register priority definitions (see Figure 5-7):

Group A IRQ0, IRQ1
Group B IRQ2, IRQ3, IRQ3
Group C IRQ5, IRQ6, IRQ7

Figure 5-7. Interrupt Request Priority Groups
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR. 1 control the relative priority of interrupt groups A, B, and C. For example, the setting "001B" for these bits would select the group relationship $B>C>A$. The setting "101B" would select the relationship $C>B>A$.

The functions of the other IPR bit settings are as follows:

- IPR. 5 controls the relative priorities of group C interrupts.
- Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5, 6, and 7. IPR. 6 defines the subgroup C relationship. IPR. 5 controls the interrupt group C.
- IPR. 0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

Figure 5-8. Interrupt Priority Register (IPR)

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all levels in the microcontroller's interrupt structure. Each bit corresponds to the interrupt level of the same number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A " 0 " indicates that no interrupt request is currently being issued for that level. A " 1 " indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific interrupt levels. After a reset, all IRQ status bits are cleared to " 0 ".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can, however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events occurred while the interrupt structure was globally disabled.

Figure 5-9. Interrupt Request Register (IRQ)

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine, and clears the pending bit to " 0 ". This type of pending bit is not mapped and cannot, therefore, be read or written by application software.

In the S3C8245/C8249 interrupt structure, the timer 0 overflow interrupt (IRQ0) belongs to this category of interrupts in which pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit is the one that should be cleared by program software. The service routine must clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a " 0 " must be written to the corresponding pending bit location in the source's mode or control register.

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

1. A source generates an interrupt request by setting the interrupt request bit to "1".
2. The CPU polling procedure identifies a pending condition for that source.
3. The CPU checks the source's interrupt level.
4. The CPU generates an interrupt acknowledge signal.
5. Interrupt logic determines the interrupt's vector address.
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:
— Interrupt processing must be globally enabled (EI, SYM. $0=$ "1")

- The interrupt level must be enabled (IMR register)
- The interrupt level must have the highest priority if more than one levels are currently requesting service
- The interrupt must be enabled at the interrupt's source (peripheral control register)

When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
2. Save the program counter (PC) and status flags to the system stack.
3. Branch to the interrupt vector to fetch the address of the service routine.
4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores the PC and status flags, setting SYM. 0 to "1". It allows the CPU to process the next interrupt request.

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM $(00 \mathrm{H}-\mathrm{FFH})$ contains the addresses of interrupt service routines that correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:

1. Push the program counter's low-byte value to the stack.
2. Push the program counter's high-byte value to the stack.
3. Push the FLAG register values to the stack.
4. Fetch the service routine's high-byte address from the vector location.
5. Fetch the service routine's low-byte address from the vector location.
6. Branch to the service routine specified by the concatenated 16 -bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range of $00 \mathrm{H}-\mathrm{FFH}$.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this, you must follow these steps:

1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.
3. Execute an El instruction to enable interrupt processing (a higher priority interrupt will be processed if it occurs).
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the previous mask value from the stack (POP IMR).
5. Execute an IRET.

Depending on the application, you may be able to simplify the procedure above to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP registers are IPH (high byte, IP15-IP8) and IPL (low byte, IP7-IP0).

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing allows an interrupt within a given level to be completed in approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast interrupt processing, you write the appropriate 3-bit value to SYM.4-SYM.2. Then, to enable fast interrupt processing for the selected level, you set SYM. 1 to " 1 ".

simsunf

FAST INTERRUPT PROCESSING (Continued)

Two other system registers support fast interrupt processing:

- The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the program counter values), and
- When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register called FLAGS' ("FLAGS prime").

NOTE

For the S3C8245/C8249 microcontroller, the service routine for any one of the eight interrupt levels: IRQ0IRQ7, can be selected for fast interrupt processing.

Procedure for Initiating Fast Interrupts

To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer (IP).
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4-SYM.2)
3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine

When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

1. The contents of the instruction pointer and the PC are swapped.
2. The FLAG register values are written to the FLAGS' ("FLAGS prime") register.
3. The fast interrupt status bit in the FLAGS register is set.
4. The interrupt is serviced.
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction pointer and PC values are swapped back.
6. The content of FLAGS' ("FLAGS prime") is copied automatically back to the FLAGS register.
7. The fast interrupt status bit in FLAGS is cleared automatically.

Relationship to Interrupt Pending Bit Types

As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the application program's interrupt service routine. You can select fast interrupt processing for interrupts with either type of pending condition clear function - by hardware or by software.

Programming Guidelines

Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the SYM register, SYM.1. Executing an El or DI instruction globally enables or disables all interrupt processing, including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast interrupt service routine ends.

NOTES

INSTRUCTION SET

OVERVIEW

The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8 microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the instruction set include:

- A full complement of 8-bit arithmetic and logic operations, including multiply and divide
- No special I/O instructions (I/O control/data registers are mapped directly into the register file)
- Decimal adjustment included in binary-coded decimal (BCD) operations
- 16-bit (word) data can be incremented and decremented
- Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0 , where bit 0 is the least significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8 -bit address in the range $0-255$ or the 4 -bit address of a working register is specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to Section 3, "Addressing Modes."

Table 6-1. Instruction Group Summary

Mnemonic	Operands	Instruction
Load Instructions		
CLR	dst	Clear
LD	dst, src	Load
LDB	dst,src	Load bit
LDE	dst,src	Load external data memory
LDC	dst,src	Load program memory
LDED	dst,src	Load external data memory and decrement
LDCD	dst,src	Load program memory and decrement
LDEI	dst,src	Load external data memory and increment
LDCI	dst,src	Load program memory and increment
LDEPD	dst,src	Load external data memory with pre-decrement
LDCPD	dst,src	Load program memory with pre-decrement
LDEPI	dst,src	Load external data memory with pre-increment
LDCPI	dst,src	Load program memory with pre-increment
LDW	dst,src	Load word
POP	dst	Pop from stack
POPUD	dst,src	Pop user stack (decrementing)
POPUI	dst,src	Pop user stack (incrementing)
PUSH	SrC	Push to stack
PUSHUD	dst,src	Push user stack (decrementing)
PUSHUI	dst,src	Push user stack (incrementing)

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction

Arithmetic Instructions

ADC	dst,src	Add with carry
ADD	dst,src	Add
CP	dst,src	Compare
DA	dst	Decimal adjust
DEC	$d s t$	Decrement
DECW	$d s t$	Decrement word
DIV	$d s t, s r c$	Divide
INC	$d s t$	Increment
INCW	$d s t$	Increment word
MULT	$d s t, s r c$	Multiply
SBC	$d s t, s r c$	Subtract with carry
SUB	$d s t, s r c$	Subtract

Logic Instructions

AND	$d s t$, src	Logical AND
COM	$d s t$	Complement
OR	$d s t, s r c$	Logical OR
XOR	$d s t, s r c$	Logical exclusive OR

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction

Program Control Instructions

BTJRF	dst,src	Bit test and jump relative on false
BTJRT	dst,src	Bit test and jump relative on true
CALL	dst	Call procedure
CPIJE	dst,src	Compare, increment and jump on equal
CPIJNE	dst,src	Compare, increment and jump on non-equal
DJNZ	r,dst	Decrement register and jump on non-zero
ENTER		Enter
EXIT		Exit
IRET		Interrupt return
JP	dst dst	Jump on condition code
JP	cc,dst	Jump unconditional
JR		Jump relative on condition code
NEXT		Next
RET		Return
WFI		Wait for interrupt

Bit Manipulation Instructions

BAND	dst,src	Bit AND
BCP	$d s t, s r c$	Bit compare
BITC	$d s t$	Bit complement
BITR	$d s t$	Bit reset
BITS	$d s t$	Bit set
BOR	$d s t, s r c$	Bit OR
BXOR	$d s t, s r c$	Bit XOR
TCM	$d s t, s r c$	Test complement under mask
TM	$d s t, s r c$	Test under mask

Table 6-1. Instruction Group Summary (Concluded)
Mnemonic Operands Instruction

Rotate and Shift Instructions

RL	dst	Rotate left
RLC	dst	Rotate left through carry
RR	dst	Rotate right
RRC	dst	Rotate right through carry
SRA	dst	Shift right arithmetic
SWAP	dst	Swap nibbles

CPU Control Instructions

CCF	Complement carry flag
DI	Disable interrupts
EI	Enable interrupts
IDLE	Enter Idle mode
NOP	No operation
RCF	Reset carry flag
SB0	Set bank 0
SB1	
SCF	Set bank 1
SRP	Src
SRP0	Src
SRP1	Src

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits, FLAGS.7-FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS. 3 and FLAGS. 2 are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.

Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will occur to the Flags register producing an unpredictable result.

Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

$Z \quad$ Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that test register bits, and for shift and rotate operations, the Z flag is set to " 1 " if the result is logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than +127 or less than 128. It is also cleared to "0" following logic operations.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by programmers, and cannot be used as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to " 1 " whenever an addition generates a carry-out of bit 3, or when a subtraction borrows out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a program.

FlS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing. When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET instruction is executed.

BA Bank Address Flag (FLAGs.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected, bank 0 or bank 1 . The BA flag is cleared to " 0 " (select bank 0) when you execute the SB0 instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag	
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
0	Cleared to logic zero
1	Set to logic one
$*$	Set or cleared according to operation
-	Value is unaffected
x	Value is undefined

Table 6-3. Instruction Set Symbols

Symbol	Description
dst	Destination operand
src	Source operand
@	Indirect register address prefix
PC	Program counter
IP	Instruction pointer
FLAGS	Flags register (D5H)
RP	Register pointer
$\#$	Immediate operand or register address prefix
H	Hexadecimal number suffix
D	Decimal number suffix
B	Binary number suffix
opc	Opcode

Table 6-4. Instruction Notation Conventions

Notation	Description	Actual Operand Range
CC	Condition code	See list of condition codes in Table 6-6.
r	Working register only	$\mathrm{Rn}(\mathrm{n}=0-15)$
rb	Bit (b) of working register	Rn.b ($\mathrm{n}=0-15, \mathrm{~b}=0-7$)
r0	Bit 0 (LSB) of working register	$\mathrm{Rn}(\mathrm{n}=0-15)$
rr	Working register pair	$\operatorname{RRp}(\mathrm{p}=0,2,4, \ldots, 14)$
R	Register or working register	reg or Rn (reg $=0-255, \mathrm{n}=0-15$)
Rb	Bit 'b' of register or working register	reg.b (reg $=0-255, \mathrm{~b}=0-7$)
RR	Register pair or working register pair	reg or RRp (reg = 0-254, even number only, where $p=0,2, \ldots, 14)$
IA	Indirect addressing mode	addr (addr $=0-254$, even number only)
Ir	Indirect working register only	@Rn ($\mathrm{n}=0-15$)
IR	Indirect register or indirect working register	@Rn or @reg (reg = 0-255, $\mathrm{n}=0-15)$
Irr	Indirect working register pair only	$@ R R \mathrm{R}$ ($\mathrm{p}=0,2, \ldots, 14$)
IRR	Indirect register pair or indirect working register pair	@RRp or @reg (reg = 0-254, even only, where $p=0,2, \ldots, 14)$
X	Indexed addressing mode	\#reg [Rn] (reg = 0-255, n = 0-15)
XS	Indexed (short offset) addressing mode	\#addr [RRp] (addr = range -128 to +127 , where $p=0,2, \ldots, 14)$
x	Indexed (long offset) addressing mode	\#addr [RRp] (addr = range 0-65535, where $p=0,2, \ldots, 14)$
da	Direct addressing mode	addr (addr = range 0-65535)
ra	Relative addressing mode	addr (addr $=$ number in the range +127 to -128 that is an offset relative to the address of the next instruction)
im	Immediate addressing mode	\#data (data = 0-255)
iml	Immediate (long) addressing mode	\#data (data = range 0-65535)

Table 6-5. Opcode Quick Reference

OPCODE MAP									
LOWER NIBBLE (HEX)									
	-	0	1	2	3	4	5	6	7
U	0	$\begin{gathered} \text { DEC } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { DEC } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { ADD } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { ADD } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \text { ADD } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \mathrm{ADD} \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { ADD } \\ \text { R1,IM } \end{gathered}$	$\begin{aligned} & \text { BOR } \\ & \text { r0-Rb } \end{aligned}$
P	1	$\begin{gathered} \text { RLC } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { RLC } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { r1, } \mathrm{r} 2 \end{aligned}$	$\begin{gathered} \mathrm{ADC} \\ \mathrm{R} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \text { ADC } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { ADC } \\ \text { R1,IM } \end{gathered}$	$\begin{gathered} \mathrm{BCP} \\ \text { r1.b, R2 } \end{gathered}$
P	2	$\begin{gathered} \text { INC } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \hline \text { INC } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { SUB } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { SUB } \\ & \text { r1, Ir2 } \end{aligned}$	$\begin{gathered} \text { SUB } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \hline \text { SUB } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { SUB } \\ \text { R1,IM } \end{gathered}$	$\begin{aligned} & \text { BXOR } \\ & \text { r0-Rb } \end{aligned}$
E	3	$\begin{gathered} \text { JP } \\ \text { IRR1 } \end{gathered}$	$\begin{gathered} \text { SRP/0/1 } \\ \text { IM } \end{gathered}$	$\begin{aligned} & \text { SBC } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{r} 1, \mathrm{lr} 2 \end{aligned}$	$\begin{gathered} \text { SBC } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { SBC } \\ \text { IR2,R1 } \end{gathered}$	$\begin{aligned} & \text { SBC } \\ & \text { R1,IM } \end{aligned}$	$\begin{gathered} \text { BTJR } \\ \text { r2.b, RA } \end{gathered}$
R	4	$\begin{aligned} & \text { DA } \\ & \text { R1 } \end{aligned}$	DA IR1	$\begin{gathered} \mathrm{OR} \\ \mathrm{r} 1, \mathrm{r} 2 \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{O} 1, \mathrm{l} 2 \end{gathered}$	$\begin{gathered} \text { OR } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { OR } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { OR } \\ \text { R1,IM } \end{gathered}$	$\begin{aligned} & \mathrm{LDB} \\ & \mathrm{r0}-\mathrm{Rb} \end{aligned}$
	5	$\begin{gathered} \text { POP } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { POP } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { AND } \\ & \text { r1,r2 } \end{aligned}$	AND r1, Ir2	$\begin{gathered} \text { AND } \\ \text { R2,R1 } \end{gathered}$	$\begin{aligned} & \text { AND } \\ & \text { IR2,R1 } \end{aligned}$	AND R1,IM	$\begin{aligned} & \text { BITC } \\ & \text { r1.b } \end{aligned}$
N	6	COM R1	$\begin{gathered} \mathrm{COM} \\ \text { IR1 } \end{gathered}$	$\begin{aligned} & \text { TCM } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { TCM } \\ & \text { r1, } \mathrm{Ir} 2 \end{aligned}$	$\begin{gathered} \text { TCM } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { TCM } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { TCM } \\ \text { R1,IM } \end{gathered}$	BAND r0-Rb
I	7	$\begin{aligned} & \text { PUSH } \\ & \text { R2 } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { IR2 } \end{aligned}$	$\begin{gathered} \mathrm{TM} \\ \mathrm{r} 1, \mathrm{r} 2 \end{gathered}$	$\underset{\mathrm{r} 1, \mathrm{lr} 2}{\mathrm{TM}}$	$\begin{gathered} \text { TM } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \hline \text { TM } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { TM } \\ \mathrm{R} 1, \mathrm{IM} \end{gathered}$	$\begin{aligned} & \text { BIT } \\ & \text { r1.b } \end{aligned}$
B	8	$\begin{gathered} \text { DECW } \\ \text { RR1 } \end{gathered}$	$\begin{gathered} \text { DECW } \\ \text { IR1 } \end{gathered}$	$\begin{aligned} & \text { PUSHUD } \\ & \text { IR1,R2 } \end{aligned}$	PUSHUI IR1,R2	MULT R2,RR1	$\begin{aligned} & \text { MULT } \\ & \text { IR2,RR1 } \end{aligned}$	MULT IM,RR1	$\begin{gathered} \mathrm{LD} \\ \mathrm{r} 1, \mathrm{x}, \mathrm{r} 2 \end{gathered}$
B	9	$\begin{aligned} & \text { RL } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \text { RL } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { POPUD } \\ & \text { IR2,R1 } \end{aligned}$	POPUI IR2,R1	$\begin{gathered} \text { DIV } \\ \text { R2,RR1 } \end{gathered}$	$\begin{aligned} & \text { DIV } \\ & \text { IR2,RR1 } \end{aligned}$	DIV IM,RR1	$\begin{gathered} \mathrm{LD} \\ \mathrm{r} 2, \mathrm{x}, \mathrm{r} 1 \end{gathered}$
L	A	INCW RR1	$\begin{gathered} \text { INCW } \\ \text { IR1 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{r} 1, \mathrm{r} 2 \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{r} 1, \mathrm{lr} 2 \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { CP } \\ \text { R1, IM } \end{gathered}$	$\begin{gathered} \text { LDC } \\ \text { r1, } \operatorname{lrr2,~xL} \end{gathered}$
E	B	$\begin{gathered} \text { CLR } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { CLR } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \text { XOR } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { XOR } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { XOR } \\ \text { R1,IM } \end{gathered}$	$\begin{gathered} \text { LDC } \\ \text { r2, } \operatorname{lrr2,~xL~} \end{gathered}$
	C	RRC R1	RRC IR1	$\begin{gathered} \text { CPIJE } \\ \text { Ir,r2,RA } \end{gathered}$	$\begin{aligned} & \text { LDC } \\ & \text { r1,lr2 } \end{aligned}$	LDW RR2,RR1	$\begin{aligned} & \text { LDW } \\ & \text { IR2,RR1 } \end{aligned}$	LDW RR1,IML	$\begin{gathered} \text { LD } \\ \text { r1, lr2 } \end{gathered}$
H	D	$\begin{gathered} \hline \text { SRA } \\ \text { R1 } \end{gathered}$	SRA IR1	$\begin{aligned} & \text { CPIJNE } \\ & \text { Irr,r2,RA } \end{aligned}$	$\begin{aligned} & \text { LDC } \\ & \text { r2,lrr1 } \end{aligned}$	$\begin{gathered} \text { CALL } \\ \text { IA1 } \end{gathered}$		$\begin{gathered} \text { LD } \\ \text { IR1,IM } \end{gathered}$	$\begin{gathered} \mathrm{LD} \\ \mathrm{Ir1} 1, \mathrm{r} 2 \end{gathered}$
E	E	RR R1	$\begin{aligned} & \text { RR } \\ & \text { IR1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LDCD } \\ & \text { r1,lrr2 } \end{aligned}$	$\begin{aligned} & \text { LDCI } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \mathrm{LD} \\ \mathrm{R} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { R2,IR1 } \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { R1,IM } \end{gathered}$	$\begin{gathered} \text { LDC } \\ \text { r1, lrr2, xs } \end{gathered}$
X	F	SWAP R1	SWAP IR1	$\begin{gathered} \text { LDCPD } \\ \text { r2,lrr1 } \end{gathered}$	$\begin{aligned} & \text { LDCPI } \\ & \text { r2,lrr1 } \end{aligned}$	CALL IRR1	$\begin{gathered} \text { LD } \\ \text { IR2,R1 } \end{gathered}$	CALL DA1	$\begin{aligned} & \text { LDC } \\ & \text { r2, } \operatorname{lrr1}, \mathrm{xs} \end{aligned}$

Table 6-5. Opcode Quick Reference (Continued)

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump instructions.

Table 6-6. Condition Codes

Binary	Mnemonic	Description	Flags Set
0000	F	Always false	-
1000	T	Always true	-
0111 (note)	C	Carry	$C=1$
1111 (note)	NC	No carry	$C=0$
0110 (note)	Z	Zero	$Z=1$
1110 (note)	NZ	Not zero	$Z=0$
1101	PL	Plus	$S=0$
0101	MI	Minus	$S=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110 (note)	EQ	Equal	$Z=1$
1110 (note)	NE	Not equal	$Z=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$(Z$ OR $(S$ XOR V $)$) $=0$
0010	LE	Less than or equal	$(Z \quad O R(S X O R V))=1$
1111 (note)	UGE	Unsigned greater than or equal	$C=0$
0111 (note)	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$

NOTES:

1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For example, Z and $E Q$ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used; after a CP instruction, however, EQ would probably be used.
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM8 instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The following information is included in each instruction description:

- Instruction name (mnemonic)
- Full instruction name
- Source/destination format of the instruction operand
- Shorthand notation of the instruction's operation
- Textual description of the instruction's effect
- Specific flag settings affected by the instruction
- Detailed description of the instruction's format, execution time, and addressing mode(s)
- Programming example(s) explaining how to use the instruction

ADC - Add with carry

ADC dst,src

Operation:
$\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{c}$
The source operand, along with the setting of the carry flag, is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed. In multiple precision arithmetic, this instruction permits the carry from the addition of low-order operands to be carried into the addition of high-order operands.

Flags: \quad C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
\mathbf{V} : Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if there is a carry from the most significant bit of the low-order four bits of the result; cleared otherwise.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Examples: Given: $\mathrm{R} 1=10 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}, \mathrm{C}$ flag $=" 1$ ", register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{AH}$:

ADC	$R 1, R 2$	\rightarrow	$R 1=14 \mathrm{H}, R 2=03 \mathrm{H}$
ADC	$R 1, @ R 2$	\rightarrow	$R 1=1 \mathrm{BH}, R 2=03 \mathrm{H}$
ADC	$01 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=24 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADC	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=2 \mathrm{BH}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADC	$01 \mathrm{H}, \# 11 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=32 \mathrm{H}$

In the first example, destination register R1 contains the value 10 H , the carry flag is set to " 1 ", and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and the carry flag value ("1") to the destination value 10 H , leaving 14 H in register R1.

ADD - Add

ADD dst,src
Operation: \quad dst \leftarrow dst + src
The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.

Flags: \quad C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
D: Always cleared to " 0 ".
H: Set if a carry from the low-order nibble occurred.

Format:

Examples: Given: $R 1=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

ADD	$\mathrm{R} 1, \mathrm{R} 2$	\rightarrow	$\mathrm{R} 1=15 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$
ADD	$\mathrm{R} 1, @ R 2$	\rightarrow	$\mathrm{R} 1=1 \mathrm{CH}, \mathrm{R} 2=03 \mathrm{H}$
ADD	$01 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=24 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADD	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=2 \mathrm{BH}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADD	$01 \mathrm{H}, \# 25 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=46 \mathrm{H}$

In the first example, destination working register R 1 contains 12 H and the source working register R2 contains 03 H . The statement "ADD R1,R2" adds 03 H to 12 H , leaving the value 15 H in register R1.

AND - Logical AND

AND dst,src
Operation: dst \leftarrow dst AND src
The source operand is logically ANDed with the destination operand. The result is stored in the destination. The AND operation results in a "1" bit being stored whenever the corresponding bits in the two operands are both logic ones; otherwise a " 0 " bit value is stored. The contents of the source are unaffected.

Flags: $\quad \mathbf{C}:$ Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)		ode SrC	
opc \quad dst \\| s			2	4	52	r	r	
				6	53	r	Ir	
opc	src	dst	3	6	54	R	R	
				6	55	R	IR	
opc	dst	SrC	3	6	56	R	IM	

Examples: Given: R1 $=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

AND	$\mathrm{R} 1, \mathrm{R} 2$	\rightarrow	$\mathrm{R} 1=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$
AND	$\mathrm{R} 1, @ \mathrm{R} 2$	\rightarrow	$R 1=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$
AND	$01 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=01 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
AND	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=00 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
AND	$01 \mathrm{H}, \# 25 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=21 \mathrm{H}$

In the first example, destination working register R1 contains the value 12H and the source working register R2 contains 03 H . The statement "AND R1,R2" logically ANDs the source operand 03 H with the destination operand value 12 H , leaving the value 02 H in register R1.

BAND — Bit AND

BAND dst,src.b
BAND dst.b,src
Operation: $\quad \operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ AND $\operatorname{src}(b)$ or
$\mathrm{dst}(\mathrm{b}) \leftarrow \mathrm{dst}(\mathrm{b})$ AND $\operatorname{src}(0)$
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of the destination (or source). The resultant bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{R} 1=07 \mathrm{H}$ and register $01 \mathrm{H}=05 \mathrm{H}$:
BAND R1,01H. $1 \rightarrow \quad \rightarrow \quad \mathrm{R} 1=06 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$
BAND 01H.1,R1 $\rightarrow \quad$ Register 01H $=05 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}$

In the first example, source register 01 H contains the value 05 H (00000101B) and destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1 value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value 06H (00000110B) in register R1.

BCP - Bit Compare

BCP dst,src.b
Operation: $\quad \operatorname{dst}(0)-\operatorname{src}(b)$
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination. The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both operands are unaffected by the comparison.

Flags: C: Unaffected.
Z: Set if the two bits are the same; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: $\mathrm{R} 1=07 \mathrm{H}$ and register $01 \mathrm{H}=01 \mathrm{H}$:
BCP R1,01H. $\quad \rightarrow \quad \mathrm{R} 1=07 \mathrm{H}$, register $01 \mathrm{H}=01 \mathrm{H}$

If destination working register R1 contains the value 07 H (00000111B) and the source register 01 H contains the value 01 H (00000001B), the statement "BCP R1,01H.1" compares bit one of the source register $(01 \mathrm{H})$ and bit zero of the destination register (R1). Because the bit values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

BITC - Bit Complement

BITC dst.b
Operation: $\quad \operatorname{dst}(b) \leftarrow$ NOT dst(b)
This instruction complements the specified bit within the destination without affecting any other bits in the destination.

Flags: \quad C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

									Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	$\mathrm{dst\|b\|0}$	2	4	57	rb							

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$
BITC R1.1 $\rightarrow \quad \mathrm{R} 1=05 \mathrm{H}$

If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1" complements bit one of the destination and leaves the value 05 H (00000101B) in register R1. Because the result of the complement is not " 0 ", the zero flag (Z) in the FLAGS register (0D5H) is cleared.

BITR — Bit Reset

BITR dst.b
Operation: $\quad \operatorname{dst}(\mathrm{b}) \leftarrow 0$
The BITR instruction clears the specified bit within the destination without affecting any other bits in the destination.

Flags: \quad No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	$\mathrm{dst}\|\mathrm{b}\| 0$	2	4	77	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$:
BITR R1.1 $\rightarrow \quad$ R1 $=05 \mathrm{H}$

If the value of working register R1 is $07 \mathrm{H}(00000111 \mathrm{~B})$, the statement "BITR R1.1" clears bit one of the destination register R1, leaving the value 05H (00000101B).

BITS - Bit Set

BITS dst.b

Operation: $\quad \operatorname{dst}(\mathrm{b}) \leftarrow 1$
The BITS instruction sets the specified bit within the destination without affecting any other bits in the destination.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
opc	$\mathrm{dst\|b\|1}$	2	4	77	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$:
BITS R1.3 $\rightarrow \quad$ R1 $=0 \mathrm{FH}$

If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit three of the destination register R1 to "1", leaving the value 0FH (00001111B).

BOR - Bit OR

BOR dst,src.b
BOR dst.b,src
Operation:
$\operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ OR $\operatorname{src}(\mathrm{b})$
or
$\operatorname{dst}(\mathrm{b}) \leftarrow \operatorname{dst}(\mathrm{b}) \mathrm{OR} \operatorname{src}(0)$
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the destination (or the source). The resulting bit value is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode dst src	
opc	dst $\|\mathrm{b}\| 0$	src	3	6	07	r0	Rb
opc	src \| $\mathrm{b}^{\text {d }} 1$	dst	3	6	07	Rb	r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit.

Examples: Given: R1 $=07 \mathrm{H}$ and register $01 \mathrm{H}=03 \mathrm{H}$:
BOR R1, 01H. $1 \quad \rightarrow \quad \mathrm{R} 1=07 \mathrm{H}$, register $01 \mathrm{H}=03 \mathrm{H}$
BOR $\quad 01 \mathrm{H} .2, R 1 \quad \rightarrow \quad$ Register $01 \mathrm{H}=07 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}$

In the first example, destination working register R1 contains the value $07 \mathrm{H}(00000111 \mathrm{~B})$ and source register 01 H the value 03 H (00000011 B). The statement "BOR R1,01H.1" logically ORs bit one of register 01 H (source) with bit zero of R1 (destination). This leaves the same value (07 H) in working register R1.

In the second example, destination register 01 H contains the value $03 \mathrm{H}(00000011 \mathrm{~B})$ and the source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically ORs bit two of register 01 H (destination) with bit zero of R1 (source). This leaves the value 07 H in register 01H.

BTJRF - Bit Test, Jump Relative on False

BTJRF dst,src.b
Operation: If $\operatorname{src}(\mathrm{b})$ is a " 0 ", then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$
The specified bit within the source operand is tested. If it is a " 0 ", the relative address is added to the program counter and control passes to the statement whose address is now in the PC; otherwise, the instruction following the BTJRF instruction is executed.

Flags: \quad No flags are affected.

Format:

$($ Note 1)				Bytes	Cycles	Opcode (Hex)	Addr Mode dst
src							

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit in length.

Example: Given: $\mathrm{R} 1=07 \mathrm{H}$:
BTJRF SKIP,R1.3 $\quad \rightarrow \quad$ PC jumps to SKIP location

If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3" tests bit 3. Because it is " 0 ", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the memory location must be within the allowed range of +127 to -128 .)

BTJRT — Bit Test, Jump Relative on True

BTJRT dst,src.b
Operation: If $\operatorname{src}(\mathrm{b})$ is a " 1 ", then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$
The specified bit within the source operand is tested. If it is a "1", the relative address is added to the program counter and control passes to the statement whose address is now in the PC; otherwise, the instruction following the BTJRT instruction is executed.

Flags: \quad No flags are affected.

Format:

$($ Note 1$)$			Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$:
BTJRT SKIP,R1.1
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the memory location must be within the allowed range of +127 to -128 .)

BXOR - Bit XOR

BXOR dst,src.b
BXOR dst.b,src
Operation: $\quad \operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ XOR $\operatorname{src}(b)$
or
dst(b) \leftarrow dst(b) XOR $\operatorname{src}(0)$
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB) of the destination (or source). The result bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{R} 1=07 \mathrm{H}(00000111 \mathrm{~B})$ and register $01 \mathrm{H}=03 \mathrm{H}(00000011 \mathrm{~B})$:
BXOR R1,01H. $\rightarrow \quad \rightarrow \quad \mathrm{R} 1=06 \mathrm{H}$, register $01 \mathrm{H}=03 \mathrm{H}$
BXOR 01H.2,R1 $\rightarrow \quad$ Register $01 \mathrm{H}=07 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}$

In the first example, destination working register R1 has the value 07H (00000111B) and source register 01 H has the value $03 \mathrm{H}(00000011 \mathrm{~B})$. The statement "BXOR $\mathrm{R} 1,01 \mathrm{H} .1$ " exclusive-ORs bit one of register 01 H (source) with bit zero of R1 (destination). The result bit value is stored in bit zero of R1, changing its value from 07 H to 06 H . The value of source register 01 H is unaffected.

CALL - Call Procedure

CALL dst

Operation:	SP	\leftarrow	$\mathrm{SP}-1$
	$@ \mathrm{SP}$	\leftarrow	PCL
	SP	\leftarrow	$\mathrm{SP}-1$
	$@ \mathrm{SP}$	\leftarrow	PCH
	PC	\leftarrow	dst

The current contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction. The specified destination address is then loaded into the program counter and points to the first instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: \quad No flags are affected.

Format:

Examples: Given: R0 $=35 \mathrm{H}, \mathrm{R} 1=21 \mathrm{H}, \mathrm{PC}=1 \mathrm{~A} 47 \mathrm{H}$, and $\mathrm{SP}=0002 \mathrm{H}$:
CALL $3521 \mathrm{H} \rightarrow \quad \mathrm{SP}=0000 \mathrm{H}$
(Memory locations $0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=4 \mathrm{AH}$, where
4AH is the address that follows the instruction.)
CALL @RRO $\rightarrow \quad \mathrm{SP}=0000 \mathrm{H}(0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=49 \mathrm{H})$
CALL $\# 40 \mathrm{H} \rightarrow \quad \mathrm{SP}=0000 \mathrm{H}(0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=49 \mathrm{H})$

In the first example, if the program counter value is 1 A 47 H and the stack pointer contains the value 0002 H , the statement "CALL 3521 H " pushes the current PC value onto the top of the stack. The stack pointer now points to memory location 0000 H . The PC is then loaded with the value 3521 H , the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the statement "CALL @RR0" produces the same result except that the 49H is stored in stack location 0001 H (because the two-byte instruction format was used). The PC is then loaded with the value 3521 H , the address of the first instruction in the program sequence to be executed. Assuming that the contents of the program counter and stack pointer are the same as in the first example, if program address 0040 H contains 35 H and program address 0041 H contains 21 H , the statement "CALL \#40H" produces the same result as in the second example.

CCF - Complement Carry Flag

CCF
Operation: $\quad \mathrm{C} \leftarrow$ NOT C
The carry flag (C) is complemented. If $\mathrm{C}=$ " 1 ", the value of the carry flag is changed to logic zero; if $C=$ " 0 ", the value of the carry flag is changed to logic one.

Flags: \quad C: Complemented.
No other flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | $E F$ |

Example: Given: The carry flag = "0":
CCF
If the carry flag = " 0 ", the CCF instruction complements it in the FLAGS register (0D5H), changing its value from logic zero to logic one.

CLR - Clear

CLR dst
Operation: \quad dst \leftarrow "0"
The destination location is cleared to " 0 ".
Flags: \quad No flags are affected.
Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	B0	R
			4	B1	IR

Examples: Given: Register $00 \mathrm{H}=4 \mathrm{FH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=5 \mathrm{EH}$:
CLR $00 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=00 \mathrm{H}$
CLR @01H \rightarrow Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=00 \mathrm{H}$

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00 H value to 00 H . In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode to clear the 02 H register value to 00 H .

COM - Complement

COM dst
Operation: dst \leftarrow NOT dst
The contents of the destination location are complemented (one's complement); all "1s" are changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

									Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	60	R							

Examples: Given: R1 $=07 \mathrm{H}$ and register $07 \mathrm{H}=0 \mathrm{~F} 1 \mathrm{H}$:
$\mathrm{COM} \quad \mathrm{R} 1 \quad \rightarrow \quad \mathrm{R} 1=0 \mathrm{~F} 8 \mathrm{H}$
COM @R1 $\rightarrow \quad \mathrm{R} 1=07 \mathrm{H}$, register $07 \mathrm{H}=0 \mathrm{EH}$

In the first example, destination working register R1 contains the value 07H (00000111B). The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

CP - Compare

CP	$d s t, s r c$
Operation:	$d s t-$ src

The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.

Flags: \quad C: Set if a "borrow" occurred (src > dst); cleared otherwise.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

opc	dst \| src

Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\underline{\text { src }}}$
2	4	A2	r	r
	6	A 3	r	Ir
3	6	A 4	R	R
	6	A5	R	IR
3	6	A6	R	IM

Examples: 1. Given: $\mathrm{R} 1=02 \mathrm{H}$ and $\mathrm{R} 2=03 \mathrm{H}$:

$$
\mathrm{CP} \quad \mathrm{R} 1, \mathrm{R} 2 \rightarrow \quad \text { Set the } \mathrm{C} \text { and } \mathrm{S} \text { flags }
$$

Destination working register R1 contains the value 02 H and source register R 2 contains the value 03 H . The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are "1".
2. Given: $\mathrm{R} 1=05 \mathrm{H}$ and $\mathrm{R} 2=0 \mathrm{AH}$:

CP R1,R2
JP UGE,SKIP
INC R1
SKIP LD R3,R1

In this example, destination working register R1 contains the value 05 H which is less than the contents of the source working register R2 (0 AH). The statement "CP R1,R2" generates C = "1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes, the value 06 H remains in working register R3.

CPIJE - Compare, Increment, and Jump on Equal

CPIJE dst,src,RA
Operation: If dst -src $=$ " 0 ", $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{RA}$
$\mathrm{lr} \leftarrow \mathrm{Ir}+1$
The source operand is compared to (subtracted from) the destination operand. If the result is " 0 ", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise, the instruction immediately following the CPIJE instruction is executed. In either case, the source pointer is incremented by one before the next instruction is executed.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	 Opcode (Hex)	Addr Mode Adst	src			
op	src	dst	RA	3	12	C 2	r	Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 $=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, and register $03 \mathrm{H}=02 \mathrm{H}$:
CPIJE R1,@R2,SKIP $\rightarrow \quad$ R2 $=04 \mathrm{H}, \mathrm{PC}$ jumps to SKIP location
In this example, working register R1 contains the value 02 H , working register R2 the value 03 H , and register 03 contains 02 H . The statement "CPIJE R1,@R2,SKIP" compares the @R2 value 02 H $(00000010 \mathrm{~B})$ to $02 \mathrm{H}(00000010 \mathrm{~B})$. Because the result of the comparison is equal, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04 H . (Remember that the memory location must be within the allowed range of +127 to -128 .)

CPIJNE - Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA
Operation: If dst - src " 0 ", $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{RA}$ $\mathrm{lr} \leftarrow \operatorname{lr}+1$

The source operand is compared to (subtracted from) the destination operand. If the result is not " 0 ", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter; otherwise the instruction following the CPIJNE instruction is executed. In either case the source pointer is incremented by one before the next instruction.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	src			
opc	src	dst	RA	3	12	D2	r	Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 $=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, and register $03 \mathrm{H}=04 \mathrm{H}$:
CPIJNE R1,@R2,SKIP $\rightarrow \quad$ R2 = 04H, PC jumps to SKIP location

Working register R1 contains the value 02 H , working register R2 (the source pointer) the value 03 H , and general register 03 the value 04 H . The statement "CPIJNE R1,@R2,SKIP" subtracts 04 H (00000100 B) from 02H (00000010 B). Because the result of the comparison is non-equal, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H. (Remember that the memory location must be within the allowed range of +127 to -128 .)

DA — Decimal Adjust

DA dst
Operation: dst \leftarrow DA dst
The destination operand is adjusted to form two 4-bit BCD digits following an addition or subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the operation performed. (The operation is undefined if the destination operand was not the result of a valid addition or subtraction of BCD digits):

Instruction	Carry Before DA	Bits 4-7 Value (Hex)	H Flag Before DA	Bits 0-3 Value (Hex)	Number Added to Byte	Carry After DA
0	$0-9$	0	$0-9$	00	0	
ADD	0	$0-8$	0	A-F	06	0
ADC	0	$0-9$	1	$0-3$	06	0
	0	A-F	0	$0-9$	60	1
	0	$9-F$	0	A-F	66	1
	0	A-F	1	$0-3$	66	1
	1	$0-2$	0	$0-9$	60	1
	1	$0-3$	0	$0-3$	66	1
	1	$0-9$	0	$0-9$	$00=-00$	0
SUB	0	1	$0-F$	$F A=-06$	0	
SBC	0	$0-F$	$0-9$	$A 0=-60$	1	
	1	$6-F$	1	$9-F$	$9 A=-66$	1

Flags: \quad C: Set if there was a carry from the most significant bit; cleared otherwise (see table).
Z: Set if result is " 0 "; cleared otherwise.
S: Set if result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
opc	dst	2	4	40	R

DA - Decimal Adjust

DA (Continued)
Example: Given: Working register R0 contains the value 15 (BCD), working register R1 contains 27 (BCD), and address 27 H contains 46 (BCD):
ADD R1,R0 \quad R $\quad \mathrm{C} \leftarrow " 0 ", \mathrm{H} \leftarrow " 0 "$, Bits $4-7=3$, bits $0-3=\mathrm{C}, \mathrm{R} 1 \leftarrow 3 \mathrm{CH}$
DA
R1
$\mathrm{R} 1 \leftarrow 3 \mathrm{CH}+06$

If addition is performed using the BCD values 15 and 27, the result should be 42 . The sum is incorrect, however, when the binary representations are added in the destination location using standard binary arithmetic:

The DA instruction adjusts this result so that the correct BCD representation is obtained:
00111100

+| 00000110 |
| :--- |
| 01000010 |$=42$

Assuming the same values given above, the statements
SUB $\quad 27 \mathrm{H}, \mathrm{RO} ; \quad \mathrm{C} \leftarrow{ }^{2} 0$ ", $\mathrm{H} \leftarrow$ " 0 ", Bits $4-7=3$, bits $0-3=1$
DA @R1 ; @R1 $\leftarrow 31-0$
leave the value 31 (BCD) in address 27H (@R1).

DEC - Decrement

DEC dst
Operation: \quad dst $\leftarrow d s t-1$
The contents of the destination operand are decremented by one.
Flags: $\quad \mathbf{C}$: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
\mathbf{S} : Set if result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | 00 | R |

Examples: Given: R1 $=03 \mathrm{H}$ and register $03 \mathrm{H}=10 \mathrm{H}$:
DEC R1 $\rightarrow \quad \mathrm{R} 1=02 \mathrm{H}$
DEC @R1 $\rightarrow \quad$ Register $03 \mathrm{H}=0 \mathrm{FH}$
In the first example, if working register R1 contains the value 03 H , the statement "DEC R1" decrements the hexadecimal value by one, leaving the value 02 H . In the second example, the statement "DEC @R1" decrements the value 10 H contained in the destination register 03 H by one, leaving the value 0FH.

DECW - Decrement Word

DECW dst
Operation: \quad dst $\leftarrow d s t-1$
The contents of the destination location (which must be an even address) and the operand following that location are treated as a single 16-bit value that is decremented by one.

Flags: $\quad \mathbf{C}:$ Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

									Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	8	80	RR							

Examples: Given: R0 $=12 \mathrm{H}, \mathrm{R} 1=34 \mathrm{H}, \mathrm{R} 2=30 \mathrm{H}$, register $30 \mathrm{H}=0 \mathrm{FH}$, and register $31 \mathrm{H}=21 \mathrm{H}$:
DECW RR0 $\rightarrow \quad$ R0 $=12 \mathrm{H}, \mathrm{R} 1=33 \mathrm{H}$
DECW @R2 \rightarrow Register 30H = 0FH, register 31H $=20 \mathrm{H}$

In the first example, destination register R0 contains the value 12 H and register R 1 the value 34 H . The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word and decrements the value of R1 by one, leaving the value 33 H .

NOTE:
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW instruction. To avoid this problem, we recommend that you use DECW as shown in the following example:

LOOP: DECW RRO
LD R2,R1
OR R2,R0
JR NZ,LOOP

DI — Disable Interrupts

DI
Operation: \quad SYM $(0) \leftarrow 0$
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits, but the CPU will not service them while interrupt processing is disabled.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | 8 F |

Example: Given: $S Y M=01 \mathrm{H}$:

DI

If the value of the SYM register is 01 H , the statement "DI" leaves the new value 00 H in the register and clears SYM. 0 to "0", disabling interrupt processing.

Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.

DIV - Divide (Unsigned)

DIV

dst,src

Operation: dst \div src
dst (UPPER) \leftarrow REMAINDER
dst (LOWER) \leftarrow QUOTIENT
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of the destination. When the quotient is $\geq 2^{8}$, the numbers stored in the upper and lower halves of the destination for quotient and remainder are incorrect. Both operands are treated as unsigned integers.

Flags: \quad C: Set if the V flag is set and quotient is between 2^{8} and $2^{9}-1$; cleared otherwise.
Z: Set if divisor or quotient = "0"; cleared otherwise.
S: Set if MSB of quotient = "1"; cleared otherwise.
V: Set if quotient is $\geq 2^{8}$ or if divisor $=" 0$ "; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.

Examples: Given: $R 0=10 \mathrm{H}, \mathrm{R} 1=03 \mathrm{H}, \mathrm{R} 2=40 \mathrm{H}$, register $40 \mathrm{H}=80 \mathrm{H}$:
DIV RR0,R2 $\rightarrow \quad \mathrm{RO}=03 \mathrm{H}, \mathrm{R} 1=40 \mathrm{H}$
DIV RR0,@R2 $\rightarrow \quad \mathrm{RO}=03 \mathrm{H}, \mathrm{R} 1=20 \mathrm{H}$
DIV RR0,\#20H $\rightarrow \quad \mathrm{RO}=03 \mathrm{H}, \mathrm{R} 1=80 \mathrm{H}$

In the first example, destination working register pair RR0 contains the values $10 \mathrm{H}(\mathrm{RO})$ and 03 H (R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit RR0 value by the 8 -bit value of the R2 (source) register. After the DIV instruction, R0 contains the value 03 H and R 1 contains 40 H . The 8-bit remainder is stored in the upper half of the destination register RR0 (R0) and the quotient in the lower half (R1).

DJNZ - Decrement and Jump if Non-Zero

DJNZ r,dst

Operation: $\quad r \leftarrow r-1$
If $r \neq 0, P C \leftarrow P C+d s t$
The working register being used as a counter is decremented. If the contents of the register are not logic zero after decrementing, the relative address is added to the program counter and control passes to the statement whose address is now in the PC. The range of the relative address is +127 to -128 , and the original value of the PC is taken to be the address of the instruction byte following the DJNZ statement.

NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at the one of location 0 COH to 0 CFH with SRP, SRP0, or SRP1 instruction.

Flags: \quad No flags are affected.

Format:

| | | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r \mid$ opc | dst | 2 | 8 (jump taken) | rA | RA |
| 8 | | 8 (no jump) | $r=0$ to F | | |

Example: Given: $\mathrm{R} 1=02 \mathrm{H}$ and LOOP is the label of a relative address:
SRP \#OCOH
DJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the destination operand instead of a numeric relative address value. In the example, working register R1 contains the value 02 H , and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H. Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative address specified by the LOOP label.

El - Enable Interrupts

EI
Operation: \quad SYM $(0) \leftarrow 1$
An El instruction sets bit zero of the system mode register, SYM. 0 to "1". This allows interrupts to be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was set while interrupt processing was disabled (by executing a DI instruction), it will be serviced when you execute the El instruction.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	4	$9 F$

Example: \quad Given: $S Y M=00 H$:
El
If the SYM register contains the value 00 H , that is, if interrupts are currently disabled, the statement "EI" sets the SYM register to 01 H , enabling all interrupts. (SYM. 0 is the enable bit for global interrupt processing.)

ENTER - Enter

ENTER

Operation: $\mathrm{SP} \quad \leftarrow \quad \mathrm{SP}-2$
$@ S P \quad \leftarrow \quad \mathrm{IP}$
$\mathrm{IP} \quad \leftarrow \quad \mathrm{PC}$
$\mathrm{PC} \quad \leftarrow \quad$ @IP
$\mathrm{IP} \quad \leftarrow \quad \mathrm{IP}+2$
This instruction is useful when implementing threaded-code languages. The contents of the instruction pointer are pushed to the stack. The program counter (PC) value is then written to the instruction pointer. The program memory word that is pointed to by the instruction pointer is loaded into the PC, and the instruction pointer is incremented by two.

Flags: \quad No flags are affected.

Format:

Bytes	Cycles	Opcode (Hex)
1	14	$1 F$

Example: The diagram below shows one example of how to use an ENTER statement.

EXIT - Exit

EXIT

Operation:

IP	\leftarrow	$@ \mathrm{SP}$
SP	\leftarrow	$\mathrm{SP}+2$
PC	\leftarrow	$@ \mathrm{IP}$
IP	\leftarrow	$\mathrm{IP}+2$

This instruction is useful when implementing threaded-code languages. The stack value is popped and loaded into the instruction pointer. The program memory word that is pointed to by the instruction pointer is then loaded into the program counter, and the instruction pointer is incremented by two.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	14 (internal stack)	$2 F$
		16 (internal stack)	

Example: The diagram below shows one example of how to use an EXIT statement.

IDLE - Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Example: The instruction
IDLE
stops the CPU clock but not the system clock.

INC - Increment

INC dst
Operation: \quad dst $\leftarrow d s t+1$
The contents of the destination operand are incremented by one.
Flags: \quad C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
\mathbf{S} : Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
dst \| opc		1	4	rE	r
				$r=0$ to F	
opc	dst	2	4	20	R
			4	21	IR

Examples: Given: $R 0=1 \mathrm{BH}$, register $00 \mathrm{H}=0 \mathrm{CH}$, and register $1 \mathrm{BH}=0 \mathrm{FH}$:
$\begin{array}{llll}\text { INC } & \mathrm{RO} & \rightarrow & \mathrm{RO}=1 \mathrm{CH} \\ \text { INC } & 00 \mathrm{H} & \rightarrow & \text { Register } 00 \mathrm{H}=0 \mathrm{DH} \\ \text { INC } & @ R 0 & \rightarrow & \text { R0 }=1 \mathrm{BH}, \text { register } 01 \mathrm{H}=10 \mathrm{H}\end{array}$
In the first example, if destination working register R0 contains the value 1BH, the statement "INC R0" leaves the value 1 CH in that same register.

The next example shows the effect an INC instruction has on register 00 H , assuming that it contains the value 0 CH .

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of register 1 BH from 0 FH to 10 H .

INCW - Increment Word

INCW dst
Operation: \quad dst \leftarrow dst +1
The contents of the destination (which must be an even address) and the byte following that location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	8	A0	RR
			8	A1	IR

Examples: Given: R0 $=1 \mathrm{AH}, \mathrm{R1}=02 \mathrm{H}$, register $02 \mathrm{H}=0 \mathrm{FH}$, and register $03 \mathrm{H}=0 \mathrm{FFH}$:
INCW RRO $\rightarrow \quad$ R0 $=1 \mathrm{AH}, \mathrm{R} 1=03 \mathrm{H}$
INCW @R1 $\rightarrow \quad$ Register $02 \mathrm{H}=10 \mathrm{H}$, register $03 \mathrm{H}=00 \mathrm{H}$

In the first example, the working register pair RR0 contains the value 1 AH in register R0 and 02 H in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect Register (IR) addressing mode to increment the contents of general register 03 H from 0 FFH to 00 H and register 02 H from 0 FH to 10 H .

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the following example:

LOOP: INCW RRO
LD R2,R1

OR R2,R0
JR NZ,LOOP

IRET - Interrupt Return

IRET
IRET (Normal)
IRET (Fast)
Operation:
FLAGS $\leftarrow @ S P$
$\mathrm{PC} \leftrightarrow \mathrm{IP}$
$\mathrm{SP} \leftarrow \mathrm{SP}+1 \quad$ FLAGS \leftarrow FLAGS'
$\mathrm{PC} \leftarrow$ @SP \quad FIS $\leftarrow 0$
$S P \leftarrow S P+2$
$\operatorname{SYM}(0) \leftarrow 1$
This instruction is used at the end of an interrupt service routine. It restores the flag register and the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: \quad All flags are restored to their original settings (that is, the settings before the interrupt occurred).
Format:

IRET
(Normal)
opc

IRET
(Fast)
opc

Bytes

1

Bytes

1

Cycles

10 (internal stack)
12 (internal stack)

Cycles

6
(internal stack)
cycles

Opcode (Hex) BF

Opcode (Hex)

BF

Example: In the figure below, the instruction pointer is initially loaded with 100 H in the main program before interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are swapped. This causes the PC to jump to address 100 H and the IP to keep the return address. The last instruction in the service routine normally is a jump to IRET at address FFH. This causes the instruction pointer to be loaded with 100 H "again" and the program counter to jump back to the main program. Now, the next interrupt can occur and the IP is still correct at 100 H .

NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to the order of the last two instructions. The IRET cannot be immediately proceeded by a clearing of the interrupt status (as with a reset of the IPR register).

JP - Jump

JP cc,dst (Conditional)

JP dst (Unconditional)
Operation: If cc is true, $\mathrm{PC} \leftarrow d s t$
The conditional JUMP instruction transfers program control to the destination address if the condition specified by the condition code (cc) is true; otherwise, the instruction following the JP instruction is executed. The unconditional JP simply replaces the contents of the PC with the contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: \quad No flags are affected.
Format: (1)

(2)		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
cc \| opc	dst	3	8	ccD	DA
				$\mathrm{cc}=0$ to F	
opc	dst	2	8	30	IRR

NOTES:

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the opcode are both four bits.

Examples: Given: The carry flag $(C)=" 1 "$, register $00=01 \mathrm{H}$, and register $01=20 \mathrm{H}$:
JP C,LABEL_W $\rightarrow \quad$ LABEL_W $=1000 \mathrm{H}, \mathrm{PC}=1000 \mathrm{H}$
$J P \quad @ 00 \mathrm{H} \quad \rightarrow \quad \mathrm{PC}=0120 \mathrm{H}$
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement "JP C,LABEL_W" replaces the contents of the PC with the value 1000 H and transfers control to that location. Had the carry flag not been set, control would then have passed to the statement immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents of the PC with the contents of the register pair 00 H and 01 H , leaving the value 0120 H .

JR - Jump Relative

JR cc,dst
Operation: If cc is true, $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$
If the condition specified by the condition code (cc) is true, the relative address is added to the program counter and control passes to the statement whose address is now in the program counter; otherwise, the instruction following the JR instruction is executed. (See list of condition codes).

The range of the relative address is $+127,-128$, and the original value of the program counter is taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
cc \| opc	dst	2	6	ccB	RA

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four bits.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:
JR C,LABEL_X $\rightarrow \quad \mathrm{PC}=1 \mathrm{FF} 7 \mathrm{H}$
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will pass control to the statement whose address is now in the PC. Otherwise, the program instruction following the JR would be executed.

LD-Load
LD dst,src
Operation: \quad dst \leftarrow src
The contents of the source are loaded into the destination. The source's contents are unaffected.
Flags: \quad No flags are affected.

Format:

LD-Load
LD
(Continued)
Examples: Given: $\mathrm{R0}=01 \mathrm{H}, \mathrm{R1}=0 \mathrm{AH}$, register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=02 \mathrm{H}, \mathrm{LOOP}=30 \mathrm{H}$, and register $3 \mathrm{AH}=0 \mathrm{FFH}$:

LD R0,\#10H $\quad \rightarrow \quad \mathrm{RO}=10 \mathrm{H}$
LD $\quad \mathrm{R} 0,01 \mathrm{H} \quad \rightarrow \quad \mathrm{RO}=20 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$
LD $01 \mathrm{H}, \mathrm{RO} \quad \rightarrow \quad$ Register $01 \mathrm{H}=01 \mathrm{H}, \mathrm{RO}=01 \mathrm{H}$
LD R1,@R0 $\rightarrow \quad \mathrm{R} 1=20 \mathrm{H}, \mathrm{R0}=01 \mathrm{H}$
LD @R0,R1 $\rightarrow \quad \mathrm{R0}=01 \mathrm{H}, \mathrm{R} 1=0 \mathrm{AH}$, register $01 \mathrm{H}=0 \mathrm{AH}$
LD $00 \mathrm{H}, 01 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=20 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$
LD $02 \mathrm{H}, @ 00 \mathrm{H} \rightarrow \quad$ Register $02 \mathrm{H}=20 \mathrm{H}$, register $00 \mathrm{H}=01 \mathrm{H}$
LD $00 \mathrm{H}, \# 0 \mathrm{AH} \quad \rightarrow \quad$ Register $00 \mathrm{H}=0 \mathrm{AH}$
LD @ $00 \mathrm{H}, \# 10 \mathrm{H} \rightarrow \quad$ Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=10 \mathrm{H}$
LD @ $00 \mathrm{H}, 02 \mathrm{H} \rightarrow \quad$ Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=02$, register $02 \mathrm{H}=02 \mathrm{H}$
LD R0,\#LOOP[R1] $\rightarrow \quad$ R0 $=0 F F H, R 1=0 A H$
LD \#LOOP[R0],R1 $\rightarrow \quad$ Register $31 \mathrm{H}=0 \mathrm{AH}, \mathrm{R0}=01 \mathrm{H}, \mathrm{R} 1=0 \mathrm{AH}$

LDB - Load Bit

LDB	dst,src.b
LDB	dst.b,src
Operation:	$\mathrm{dst}(0) \leftarrow \operatorname{src}(\mathrm{b})$
	or
	$\mathrm{dst}(\mathrm{b}) \leftarrow \operatorname{src}(0)$

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the source is loaded into the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: \quad No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode	
opc	dst \| b 0	src	3	6	47	r0	Rb
opc	src \| $\mathrm{b}^{\text {d }} 1$	dst	3	6	47	Rb	r0

NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit address ' b ' is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{RO}=06 \mathrm{H}$ and general register $00 \mathrm{H}=05 \mathrm{H}$:
LDB $\quad \mathrm{R} 0,00 \mathrm{H} .2 \rightarrow \mathrm{RO}=07 \mathrm{H}$, register $00 \mathrm{H}=05 \mathrm{H}$
LDB $00 \mathrm{H} .0, \mathrm{RO} \rightarrow \quad \mathrm{RO}=06 \mathrm{H}$, register $00 \mathrm{H}=04 \mathrm{H}$
In the first example, destination working register R0 contains the value 06 H and the source general register 00 H the value 05 H . The statement "LD R0,00H.2" loads the bit two value of the 00 H register into bit zero of the R0 register, leaving the value 07 H in register R0.

In the second example, 00 H is the destination register. The statement "LD $00 \mathrm{H} .0, \mathrm{RO}$ " loads bit zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04 H in general register 00 H .

LDC/LDE - Load Memory

LDC/LDE dst,src
Operation: \quad dst \leftarrow src
This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory. The assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number for data memory.

Flags: \quad No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr dst	Mode SrC
1.	opc	dst \| src			2	10	C3	r	Irr
2.	opc	src \| dst			2	10	D3	Irr	r
3.	opc	dst \| src	XS		3	12	E7	r	XS [rr]
4.	opc	src \| dst	XS		3	12	F7	XS [rr]	r
5.	opc	dst \| src	XL_{L}	XL_{H}	4	14	A7	r	XL [rr]
6.	opc	src \| dst	XL_{L}	XL_{H}	4	14	B7	XL [rr]	r
7.	opc	dst \| 0000	DA ${ }_{\text {L }}$	DA_{H}	4	14	A7	r	DA
8.	opc	src \| 0000	DA ${ }_{\text {L }}$	DA_{H}	4	14	B7	DA	r
9.	opc	dst \| 0001	DA ${ }_{\text {L }}$	DA_{H}	4	14	A7	r	DA
10.	opc	src \| 0001	DA ${ }_{\text {L }}$	DA_{H}	4	14	B7	DA	r

NOTES:

1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0-1.
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one byte.
3. For formats 5 and 6 , the destination address ' $\mathrm{XL}[\mathrm{rr}]$ and the source address ' XL [rr]' are each two bytes.
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used in formats 9 and 10, are used to address data memory.
```
LDC/LDE - Load Memory
LDC/LDE (Continued)
Examples: Given: R0 \(=11 \mathrm{H}, \mathrm{R} 1=34 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\); Program memory locations
    \(0103 \mathrm{H}=4 \mathrm{FH}, 0104 \mathrm{H}=1 \mathrm{~A}, 0105 \mathrm{H}=6 \mathrm{DH}\), and \(1104 \mathrm{H}=88 \mathrm{H}\). External data memory locations
    \(0103 \mathrm{H}=5 \mathrm{FH}, 0104 \mathrm{H}=2 \mathrm{AH}, 0105 \mathrm{H}=7 \mathrm{DH}\), and \(1104 \mathrm{H}=98 \mathrm{H}:\)
    LDC R0,@RR2 ; R0 \(\leftarrow\) contents of program memory location 0104H
    ; R0 \(=1 \mathrm{AH}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDE \(\quad\) R0,@RR2 \(\quad ; \quad \mathrm{RO} \leftarrow\) contents of external data memory location 0104 H
        ; RO \(=2 \mathrm{AH}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDC (note) @RR2,R0 ; 11H (contents of R0) is loaded into program memory
        location 0104H (RR2),
        working registers R0, R2, R3 \(\rightarrow\) no change
    LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
        location 0104H (RR2),
        working registers R0, R2, R3 \(\rightarrow\) no change
    LDC R0,\#01H[RR2] ; R0 \(\leftarrow\) contents of program memory location 0105 H
        (01H + RR2),
        ; R0 \(=6 \mathrm{DH}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDE \(\quad\) R0,\#01H[RR2] ; R0 \(\leftarrow\) contents of external data memory location 0105 H
        ; ( \(01 \mathrm{H}+\mathrm{RR} 2\) ), R0 \(=7 \mathrm{DH}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDC (note) \#01H[RR2],R0 ; 11H (contents of R0) is loaded into program memory location
    ; \(0105 \mathrm{H}(01 \mathrm{H}+0104 \mathrm{H})\)
    LDE \#01H[RR2],R0 ; 11H (contents of R0) is loaded into external data memory
    ; location \(0105 \mathrm{H}(01 \mathrm{H}+0104 \mathrm{H})\)
    LDC R0,\#1000H[RR2] ; R0 \(\leftarrow\) contents of program memory location 1104 H
    ; \((1000 \mathrm{H}+0104 \mathrm{H}), \mathrm{RO}=88 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDE \(\quad \mathrm{R} 0, \# 1000 \mathrm{H}[\mathrm{RR} 2] ; \mathrm{RO} \leftarrow\) contents of external data memory location 1104 H
    ; \((1000 \mathrm{H}+0104 \mathrm{H}), \mathrm{RO}=98 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}\)
    LDC \(\quad \mathrm{R} 0,1104 \mathrm{H} \quad ; \mathrm{R} 0 \leftarrow\) contents of program memory location \(1104 \mathrm{H}, \mathrm{RO}=88 \mathrm{H}\)
    LDE \(\quad\) R0,1104 \(\mathrm{H} \quad ; \mathrm{RO} \leftarrow\) contents of external data memory location 1104 H ,
        \(R 0=98 \mathrm{H}\)
    LDC (note) \(1105 \mathrm{H}, \mathrm{RO} \quad ; 11 \mathrm{H}\) (contents of R0) is loaded into program memory location
        \(1105 \mathrm{H},(1105 \mathrm{H}) \leftarrow 11 \mathrm{H}\)
    LDE \(1105 \mathrm{H}, \mathrm{RO} \quad ; \quad 11 \mathrm{H}\) (contents of R0) is loaded into external data memory
    ; location \(1105 \mathrm{H},(1105 \mathrm{H}) \leftarrow 11 \mathrm{H}\)
```

NOTE: These instructions are not supported by masked ROM type devices.

LDCD/LDED - Load Memory and Decrement

LDCD/LDED dst,src
Operation: \quad dst \leftarrow src
$\mathrm{rr} \leftarrow \mathrm{rr}-1$
These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.

Format:

| c | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Examples: Given: R6 = 10H, R7 $=33 \mathrm{H}, \mathrm{R} 8=12 \mathrm{H}$, program memory location $1033 \mathrm{H}=0 \mathrm{CDH}$, and external data memory location $1033 \mathrm{H}=0 \mathrm{DDH}$:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one
; R8 $=0 \mathrm{CDH}, \mathrm{R} 6=10 \mathrm{H}, \mathrm{R} 7=32 \mathrm{H}(\mathrm{RR} 6 \leftarrow \mathrm{RR} 6-1)$
LDED R8,@RR6 ; ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 $\leftarrow R R 6-1$)
; R8 = 0DDH, R6 = 10H, R7 = 32H

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI dst,src
Operation: \quad dst \leftarrow src
$\mathrm{rr} \leftarrow \mathrm{rr}+1$
These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes 'Irr' even for program memory and odd for data memory.

Flags: \quad No flags are affected.
Format:

c	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations $1033 \mathrm{H}=0 \mathrm{CDH}$ and $1034 \mathrm{H}=0 \mathrm{C} 5 \mathrm{H}$; external data memory locations $1033 \mathrm{H}=0 \mathrm{DDH}$ and $1034 \mathrm{H}=0 \mathrm{D} 5 \mathrm{H}$:

LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 $\leftarrow R R 6+1$)
; R8 = $0 \mathrm{CDH}, \mathrm{R} 6=10 \mathrm{H}, \mathrm{R} 7=34 \mathrm{H}$

LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 \leftarrow RR6 + 1)
; R8 = 0DDH, R6 $=10 \mathrm{H}, \mathrm{R} 7=34 \mathrm{H}$

LDCPD/LDEPD - Load Memory with Pre-Decrement

LDCPD/
LDEPD dst,src
Operation: $\quad \mathrm{rr} \leftarrow \mathrm{rr}-1$
dst $\leftarrow \mathrm{src}$
These instructions are used for block transfers of data from program or data memory from the register file. The address of the memory location is specified by a working register pair and is first decremented. The contents of the source location are then loaded into the destination location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler makes 'Irr' an even number for program memory and an odd number for external data memory.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Examples: Given: R0 $=77 \mathrm{H}, \mathrm{R} 6=30 \mathrm{H}$, and $\mathrm{R} 7=00 \mathrm{H}$:
LDCPD @RR6,R0 ; $(\mathrm{RR} 6 \leftarrow \mathrm{RR} 6-1)$
77 H (contents of R0) is loaded into program memory location
; 2FFFH (3000H - 1H)
; RO $=77 \mathrm{H}, \mathrm{R} 6=2 \mathrm{FH}, \mathrm{R} 7=0 \mathrm{FFH}$
LDEPD @RR6,R0 ; (RR6 $\leftarrow \operatorname{RR6}-1)$
; 77H (contents of R0) is loaded into external data memory
location 2FFFH $(3000 \mathrm{H}-1 \mathrm{H})$
; R0 $=77 \mathrm{H}, \mathrm{R} 6=2 \mathrm{FH}, \mathrm{R} 7=0 \mathrm{FFH}$

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI/
LDEPI dst,src
Operation:
$r r \leftarrow r r+1$
dst \leftarrow src
These instructions are used for block transfers of data from program or data memory from the register file. The address of the memory location is specified by a working register pair and is first incremented. The contents of the source location are loaded into the destination location. The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Examples: Given: R0 $=7 \mathrm{FH}, \mathrm{R} 6=21 \mathrm{H}$, and R7 $=0 \mathrm{FFH}$:
LDCPI @RR6,R0 ; (RR6 $\leftarrow \mathrm{RR} 6+1)$
7FH (contents of R0) is loaded into program memory location $2200 \mathrm{H}(21 \mathrm{FFH}+1 \mathrm{H})$
; RO $=7 \mathrm{FH}, \mathrm{R} 6=22 \mathrm{H}, \mathrm{R} 7=00 \mathrm{H}$
LDEPI @RR6,R0 ; (RR6 $\leftarrow \mathrm{RR} 6+1)$
7FH (contents of R0) is loaded into external data memory
location $2200 \mathrm{H}(21 \mathrm{FFH}+1 \mathrm{H})$
$R 0=7 \mathrm{FH}, \mathrm{R} 6=22 \mathrm{H}, \mathrm{R} 7=00 \mathrm{H}$

LDW - Load Word

LDW dst,src
Operation: \quad dst \leftarrow src
The contents of the source (a word) are loaded into the destination. The contents of the source are unaffected.

Flags: \quad No flags are affected.

Format:

Examples: Given: R4 $=06 \mathrm{H}, \mathrm{R} 5=1 \mathrm{CH}, \mathrm{R} 6=05 \mathrm{H}, \mathrm{R} 7=02 \mathrm{H}$, register $00 \mathrm{H}=1 \mathrm{AH}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{FH}$:

LDW	RR6,RR4	\rightarrow	$R 6=06 \mathrm{H}, \mathrm{R} 7=1 \mathrm{CH}, \mathrm{R} 4=06 \mathrm{H}, \mathrm{R} 5=1 \mathrm{CH}$
LDW	$00 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=03 \mathrm{H}$, register $01 \mathrm{H}=0 \mathrm{FH}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{FH}$
LDW	RR2,@R7	\rightarrow	$\mathrm{R} 2=03 \mathrm{H}, \mathrm{R} 3=0 \mathrm{FH}$,
LDW	$04 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $04 \mathrm{H}=03 \mathrm{H}$, register $05 \mathrm{H}=0 \mathrm{FH}$
LDW	RR6,\#1234H	\rightarrow	R6 $=12 \mathrm{H}, \mathrm{R7}=34 \mathrm{H}$
LDW	$02 \mathrm{H}, \# 0 F E D H$	\rightarrow	Register $02 \mathrm{H}=0 \mathrm{FH}$, register $03 \mathrm{H}=0 \mathrm{EDH}$

In the second example, please note that the statement "LDW $00 \mathrm{H}, 02 \mathrm{H}$ " loads the contents of the source word $02 \mathrm{H}, 03 \mathrm{H}$ into the destination word $00 \mathrm{H}, 01 \mathrm{H}$. This leaves the value 03 H in general register 00 H and the value 0 FH in register 01 H .

The other examples show how to use the LDW instruction with various addressing modes and formats.

MULT - Multiply (Unsigned)

MULT
dst,src
Operation: \quad dst \leftarrow dst \times src
The 8-bit destination operand (even register of the register pair) is multiplied by the source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination address. Both operands are treated as unsigned integers.

Flags: \quad C: Set if result is >255; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.

Format:

opc	src	dst

Bytes	Cycles	Opcode (Hex)	Addr Mode	
3	22	84	$R R$	$\underline{\mathrm{dst}}$
3	22	85	$R R$	IR
	22	86	$R R$	IM

Examples: Given: Register $00 \mathrm{H}=20 \mathrm{H}$, register $01 \mathrm{H}=03 \mathrm{H}$, register $02 \mathrm{H}=09 \mathrm{H}$, register $03 \mathrm{H}=06 \mathrm{H}$:

MULT	$00 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=09 \mathrm{H}$
MULT	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=00 \mathrm{H}$, register $01 \mathrm{H}=0 \mathrm{C} 0 \mathrm{H}$
MULT	$00 \mathrm{H}, \# 30 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=06 \mathrm{H}$, register $01 \mathrm{H}=00 \mathrm{H}$

In the first example, the statement "MULT $00 \mathrm{H}, 02 \mathrm{H}$ " multiplies the 8 -bit destination operand (in the register 00 H of the register pair $00 \mathrm{H}, 01 \mathrm{H}$) by the source register 02 H operand $(09 \mathrm{H})$. The 16 -bit product, 0120 H , is stored in the register pair $00 \mathrm{H}, 01 \mathrm{H}$.

NEXT - Next

NEXT

Operation: $\quad \mathrm{PC} \leftarrow$ @ IP
$\mathrm{IP} \leftarrow \mathrm{IP}+2$
The NEXT instruction is useful when implementing threaded-code languages. The program memory word that is pointed to by the instruction pointer is loaded into the program counter. The instruction pointer is then incremented by two.

Flags: \quad No flags are affected.

Format:

Bytes \begin{tabular}{ccc}

Cycles \& | Opcode |
| :---: |
| (Hex) |

1 \& 10 \& $0 F$
\end{tabular}

Example: The following diagram shows one example of how to use the NEXT instruction.

NOP - No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to effect a timing delay of variable duration.

Flags: \quad No flags are affected.
Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | FF |

Example: When the instruction
NOP
is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution time.

OR - Logical OR

OR dst,src
Operation: dst \leftarrow dst OR src
The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected. The OR operation results in a "1" being stored whenever either of the corresponding bits in the two operands is a " 1 "; otherwise a " 0 " is stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Examples: Given: R0 $=15 \mathrm{H}, \mathrm{R} 1=2 \mathrm{AH}, \mathrm{R} 2=01 \mathrm{H}$, register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=37 \mathrm{H}$, and register $08 \mathrm{H}=8 \mathrm{AH}$:

OR R0,R1 $\rightarrow \quad \mathrm{RO}=3 \mathrm{FH}, \mathrm{R} 1=2 \mathrm{AH}$
OR R0,@R2 $\rightarrow \quad$ R0 $=37 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}$, register $01 \mathrm{H}=37 \mathrm{H}$
OR $\quad 00 \mathrm{H}, 01 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=3 \mathrm{FH}$, register $01 \mathrm{H}=37 \mathrm{H}$
OR $\quad 01 \mathrm{H}, @ 00 \mathrm{H} \rightarrow \quad$ Register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=0 \mathrm{BFH}$
OR $00 \mathrm{H}, \# 02 \mathrm{H} \rightarrow \quad$ Register $00 \mathrm{H}=0 \mathrm{AH}$
In the first example, if working register R0 contains the value 15 H and register R1 the value 2 AH , the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH) in destination register R0.

The other examples show the use of the logical OR instruction with the various addressing modes and formats.

POP - Pop From Stack

POP dst
Operation: dst \leftarrow @SP
$S P \leftarrow S P+1$
The contents of the location addressed by the stack pointer are loaded into the destination. The stack pointer is then incremented by one.

Flags: No flags affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 8 | 50 | R |

Examples: Given: Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=1 \mathrm{BH}, \mathrm{SPH}(0 \mathrm{D} 8 \mathrm{H})=00 \mathrm{H}, \mathrm{SPL}(0 \mathrm{D} 9 \mathrm{H})=0 \mathrm{FBH}$, and stack register $0 \mathrm{FBH}=55 \mathrm{H}$:

POP	00 H	\rightarrow	Register $00 \mathrm{H}=55 \mathrm{H}, \mathrm{SP}=00 \mathrm{FCH}$
POP	$@ 00 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=55 \mathrm{H}, \mathrm{SP}=00 \mathrm{FCH}$

In the first example, general register 00 H contains the value 01 H . The statement "POP 00 H " loads the contents of location $00 \mathrm{FBH}(55 \mathrm{H})$ into destination register 00 H and then increments the stack pointer by one. Register 00 H then contains the value 55 H and the SP points to location 00 FCH .

POPUD - Pop User Stack (Decrementing)

POPUD dst,src
Operation: \quad dst \leftarrow src
$\mathrm{IR} \leftarrow \mathrm{IR}-1$
This instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then decremented.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: Register $00 \mathrm{H}=42 \mathrm{H}$ (user stack pointer register), register $42 \mathrm{H}=6 \mathrm{FH}$, and register $02 \mathrm{H}=70 \mathrm{H}$:

POPUD $02 \mathrm{H}, @ 00 \mathrm{H} \rightarrow$ Register $00 \mathrm{H}=41 \mathrm{H}$, register $02 \mathrm{H}=6 \mathrm{FH}$, register $42 \mathrm{H}=6 \mathrm{FH}$
If general register 00 H contains the value 42 H and register 42 H the value 6 FH , the statement "POPUD $02 \mathrm{H}, @ 00 \mathrm{H}$ " loads the contents of register 42 H into the destination register 02 H . The user stack pointer is then decremented by one, leaving the value 41 H .

POPUI — Pop User Stack (Incrementing)

POPUI dst,src
Operation: \quad dst \leftarrow src
$\mathrm{IR} \leftarrow \mathrm{IR}+1$
The POPUI instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then incremented.

Flags: \quad No flags are affected.
Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: Register $00 \mathrm{H}=01 \mathrm{H}$ and register $01 \mathrm{H}=70 \mathrm{H}$:
POPUI 02H,@00H $\rightarrow \quad$ Register $00 \mathrm{H}=02 \mathrm{H}$, register $01 \mathrm{H}=70 \mathrm{H}$, register $02 \mathrm{H}=70 \mathrm{H}$
If general register 00 H contains the value 01 H and register 01 H the value 70 H , the statement "POPUI $02 \mathrm{H}, @ 00 \mathrm{H}$ " loads the value 70 H into the destination general register 02 H . The user stack pointer (register 00 H) is then incremented by one, changing its value from 01 H to 02 H .

PUSH - Push To Stack

PUSH src

Operation: $\quad \mathrm{SP} \leftarrow \mathrm{SP}-1$
$@$ SP \leftarrow src
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src) into the location addressed by the decremented stack pointer. The operation then adds the new value to the top of the stack.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
opc	src		2	(internal clock) 8 (external clock)	70

Examples: Given: Register $40 \mathrm{H}=4 \mathrm{FH}$, register $4 \mathrm{FH}=0 \mathrm{AAH}, \mathrm{SPH}=00 \mathrm{H}$, and $\mathrm{SPL}=00 \mathrm{H}$:
PUSH $40 \mathrm{H} \quad \rightarrow \quad$ Register $40 \mathrm{H}=4 \mathrm{FH}$, stack register $0 \mathrm{FFH}=4 \mathrm{FH}$, $\mathrm{SPH}=0 \mathrm{FFH}, \mathrm{SPL}=0 \mathrm{FFH}$

PUSH @40H $\rightarrow \quad$ Register $40 \mathrm{H}=4 \mathrm{FH}$, register 4FH $=0 \mathrm{AAH}$, stack register $0 F F H=0 A A H, S P H=0 F F H, S P L=0 F F H$

In the first example, if the stack pointer contains the value 0000 H , and general register 40 H the value 4 FH , the statement "PUSH 40 H " decrements the stack pointer from 0000 to $0 F F F F H$. It then loads the contents of register 40H into location 0FFFFH and adds this new value to the top of the stack.

PUSHUD — Push User Stack (Decrementing)

PUSHUD dst,src
Operation: $\quad \mathrm{IR} \leftarrow \mathrm{IR}-1$
dst \leftarrow src
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements the user stack pointer and loads the contents of the source into the register addressed by the decremented stack pointer.

Flags: \quad No flags are affected.
Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: Register $00 \mathrm{H}=03 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, and register $02 \mathrm{H}=1 \mathrm{AH}$:
PUSHUD @00H, $01 \mathrm{H} \rightarrow$ Register $00 \mathrm{H}=02 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, register $02 \mathrm{H}=05 \mathrm{H}$
If the user stack pointer (register 00 H , for example) contains the value 03 H , the statement "PUSHUD @00H, 01 H " decrements the user stack pointer by one, leaving the value 02 H . The 01 H register value, 05 H , is then loaded into the register addressed by the decremented user stack pointer.

PUSHUI — Push User Stack (Incrementing)

PUSHUI dst,src
Operation: $\quad \mathrm{IR} \leftarrow \mathrm{IR}+1$
dst \leftarrow src
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user stack pointer and then loads the contents of the source into the register location addressed by the incremented user stack pointer.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: Register $00 \mathrm{H}=03 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, and register $04 \mathrm{H}=2 \mathrm{AH}$:
PUSHUI @00H, $01 \mathrm{H} \rightarrow$ Register $00 \mathrm{H}=04 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, register $04 \mathrm{H}=05 \mathrm{H}$
If the user stack pointer (register 00 H , for example) contains the value 03 H , the statement "PUSHUI @ $00 \mathrm{H}, 01 \mathrm{H}$ " increments the user stack pointer by one, leaving the value 04 H . The 01 H register value, 05 H , is then loaded into the location addressed by the incremented user stack pointer.

RCF - Reset Carry Flag

RCF RCF
Operation: $\quad C \leftarrow 0$
The carry flag is cleared to logic zero, regardless of its previous value.
Flags: \quad C: \quad Cleared to "0".
No other flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	4	CF

Example: Given: $C=" 1 "$ or "0":
The instruction RCF clears the carry flag (C) to logic zero.

RET - Return

RET
Operation: $\quad \mathrm{PC} \leftarrow$ @SP
$S P \leftarrow S P+2$
The RET instruction is normally used to return to the previously executing procedure at the end of a procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer are popped into the program counter. The next statement that is executed is the one that is addressed by the new program counter value.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	8 (internal stack)	AF
		10 (internal stack)	

Example: Given: $S P=00 F C H,(S P)=101 A H$, and $P C=1234$:
RET $\rightarrow \quad \mathrm{PC}=101 \mathrm{AH}, \mathrm{SP}=00 \mathrm{FEH}$
The statement "RET" pops the contents of stack pointer location $00 \mathrm{FCH}(10 \mathrm{H})$ into the high byte of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the PC's low byte and the instruction at location 101 AH is executed. The stack pointer now points to memory location 00FEH.

RL - Rotate Left

RL dst
Operation: $\quad \mathrm{C} \leftarrow$ dst (7)
dst $(0) \leftarrow$ dst (7)
dst $(\mathrm{n}+1) \leftarrow \mathrm{dst}(\mathrm{n}), \mathrm{n}=0-6$
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag.

Flags: \quad C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | 90 | R |

Examples:
Given: Register $00 \mathrm{H}=0 \mathrm{AAH}$, register $01 \mathrm{H}=02 \mathrm{H}$ and register $02 \mathrm{H}=17 \mathrm{H}$:

RL	00 H	\rightarrow	Register $00 \mathrm{H}=55 \mathrm{H}, \mathrm{C}=" 1 "$
RL	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=2 \mathrm{EH}, \mathrm{C}=" 0 "$

In the first example, if general register 00 H contains the value 0 AAH (10101010B), the statement "RL 00 H " rotates the 0AAH value left one bit position, leaving the new value 55 H (01010101 B) and setting the carry and overflow flags.

RLC — Rotate Left Through Carry

RLC
 dst

Operation: dst (0) $\leftarrow \mathrm{C}$
$C \leftarrow$ dst (7)
dst $(\mathrm{n}+1) \leftarrow \mathrm{dst}(\mathrm{n}), \mathrm{n}=0-6$
The contents of the destination operand with the carry flag are rotated left one bit position. The initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

Flags: \quad C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | 10 | R |

Examples: Given: Register $00 \mathrm{H}=0 \mathrm{AAH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=17 \mathrm{H}, \mathrm{C}=$ " 0 ":
RLC $\quad 00 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=54 \mathrm{H}, \mathrm{C}=" 1 "$
RLC @01H $\rightarrow \quad$ Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=2 \mathrm{EH}, \mathrm{C}=\mathrm{C}^{2} 0$
In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC 00 H " rotates 0 AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the initial value of the C flag replaces bit zero of register 00 H , leaving the value 55 H (01010101 B). The MSB of register 00 H resets the carry flag to " 1 " and sets the overflow flag.

RR — Rotate Right

RR dst
Operation: $\quad C \leftarrow d s t(0)$
dst (7) \leftarrow dst (0)
dst $(\mathrm{n}) \leftarrow$ dst $(\mathrm{n}+1), \mathrm{n}=0-6$
The contents of the destination operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags: \quad C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	E0	R
			4	E1	IR

Examples: Given: Register $00 \mathrm{H}=31 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=17 \mathrm{H}$:

RR	00 H	\rightarrow	Register $00 \mathrm{H}=98 \mathrm{H}, \mathrm{C}=" 1 "$
RR	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=8 \mathrm{BH}, \mathrm{C}=" 1 "$

In the first example, if general register 00 H contains the value 31 H (00110001B), the statement "RR $00 \mathrm{H} "$ rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7 , leaving the new value 98 H (10011000B) in the destination register. The initial bit zero also resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

RRC - Rotate Right Through Carry

RRC
 dst

Operation: \quad dst $(7) \leftarrow C$
$C \leftarrow$ dst (0)
dst $(\mathrm{n}) \leftarrow$ dst $(\mathrm{n}+1), \mathrm{n}=0-6$
The contents of the destination operand and the carry flag are rotated right one bit position. The initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7 (MSB).

Flags: $\quad \mathbf{C}:$ Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0" cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

									Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	C 0	R							

Examples: Given: Register $00 \mathrm{H}=55 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=17 \mathrm{H}$, and $\mathrm{C}=" 0$ ":
RRC $\quad 00 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=2 \mathrm{AH}, \mathrm{C}=" 1 "$
RRC @01H $\rightarrow \quad$ Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=0 \mathrm{HH}, \mathrm{C}=$ " $1 "$
In the first example, if general register 00 H contains the value 55 H (01010101 B), the statement "RRC 00 H " rotates this value one bit position to the right. The initial value of bit zero ("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2 AH (00101010 B) in destination register 00 H . The sign flag and overflow flag are both cleared to " 0 ".

SBO - Select Bank 0

SB0
Operation: $\quad \mathrm{BANK} \leftarrow 0$
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero, selecting bank 0 register addressing in the set 1 area of the register file.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	4	4 F

Example: The statement

SB0
clears FLAGS. 0 to " 0 ", selecting bank 0 register addressing.

SB1 - Select Bank 1

SB1
Operation: \quad BANK $\leftarrow 1$
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one, selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not implemented in some S3C8-series microcontrollers.)

Flags: \quad No flags are affected.
Format:

		Bytes	Cycles	Opcode (Hex)
	opc	1	4	5F
Example:	The sta			
	SB1			

SBC - Subtract with Carry

SBC dst,src
Operation: dst \leftarrow dst - src - c
The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's-complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.

Flags: \quad C: Set if a borrow occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise, indicating a "borrow".

Format:

Examples: Given: $\mathrm{R} 1=10 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}, \mathrm{C}=" 1$ ", register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=\mathrm{OAH}$:

SBC	$R 1, R 2$	\rightarrow	$R 1=0 C H, R 2=03 H$
SBC	$R 1, @ R 2$	\rightarrow	$R 1=05 H, R 2=03 H$, register $03 H=0 A H$
SBC	$01 H, 02 H$	\rightarrow	Register $01 H=1 C H$, register $02 H=03 H$
SBC	$01 H, @ 02 H$	\rightarrow	Register $01 H=15 H$, register $02 H=03 H$, register $03 H=0 A H$
SBC	$01 H, \# 8 A H$	\rightarrow	Register $01 H=95 H ; C, S$, and $V=" 1 "$

In the first example, if working register R1 contains the value 10 H and register R 2 the value 03 H , the statement "SBC R1,R2" subtracts the source value (03 H) and the C flag value ("1") from the destination $(10 \mathrm{H})$ and then stores the result (0 CH) in register R1.

SCF - Set Carry Flag

SCF
Operation: $\quad C \leftarrow 1$
The carry flag (C) is set to logic one, regardless of its previous value.
Flags: \quad C: Set to "1".
No other flags are affected.

Format:

Bytes \quad Cycles | Opcode |
| :---: | :---: | :---: |
| (Hex) |

Example: The statement

SCF
sets the carry flag to logic one.

SRA - Shift Right Arithmetic

SRA
dst
Operation: \quad dst (7) \leftarrow dst (7)
$C \leftarrow$ dst (0)
dst $(\mathrm{n}) \leftarrow$ dst $(\mathrm{n}+1), \mathrm{n}=0-6$
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit position 6.

Flags: \quad C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Always cleared to " 0 ".
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | D0 | R |

Examples: Given: Register $00 \mathrm{H}=9 \mathrm{AH}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{BCH}$, and $\mathrm{C}=" 1$ ":
SRA $\quad 00 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=0 \mathrm{CD}, \mathrm{C}=" 0 "$
SRA @02H $\rightarrow \quad$ Register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{DEH}, \mathrm{C}={ }^{2} 0 "$
In the first example, if general register 00H contains the value 9AH (10011010B), the statement "SRA 00 H " shifts the bit values in register 00 H right one bit position. Bit zero ("0") clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0 CDH (11001101B) in destination register 00 H .

SRP/SRP0/SRP1 — Set Register Pointer

SRP	src			
SRPO	src			
SRP1	src			
Operation:	If $\operatorname{src}(1)=1$ and $\operatorname{src}(0)=0$ then:	RP0 (3-7)	\leftarrow	src (3-7)
	If $\operatorname{src}(1)=0$ and $\operatorname{src}(0)=1$ then:	RP1 (3-7)	\leftarrow	src (3-7)
	If src (1) $=0$ and $\operatorname{src}(0)=0$ then:	RP0 (4-7)	\leftarrow	src (4-7),
		RP0 (3)	\leftarrow	0
		RP1 (4-7)	\leftarrow	src (4-7),
		RP1 (3)	\leftarrow	1

The source data bits one and zero (LSB) determine whether to write one or both of the register pointers, RP0 and RP1. Bits 3-7 of the selected register pointer are written unless both register pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode src	
opc	src	2	4	31	IM

Examples: The statement
SRP \#40H
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location 0D7H to 48 H .

The statement "SRP0 \#50H" sets RP0 to 50 H , and the statement "SRP1 \#68H" sets RP1 to 68 H .

STOP - Stop Operation

STOP

Operation:
The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained. Stop mode can be released by an external reset operation or by external interrupts. For the reset operation, the RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst \quad srC
opc	1	4	7F	- -

Example: The statement
STOP
halts all microcontroller operations.

SUB - Subtract

SUB dst,src
Operation: \quad dst \leftarrow dst - src
The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
\mathbf{V} : Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise indicating a "borrow".

Format:

Examples: Given: R1 $=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

SUB	$R 1, R 2$	\rightarrow	$R 1=0 F H, R 2=03 H$
SUB	$R 1, @ R 2$	\rightarrow	$R 1=08 H, R 2=03 H$
SUB	$01 H, 02 H$	\rightarrow	Register $01 \mathrm{H}=1 \mathrm{EH}$, register $02 \mathrm{H}=03 \mathrm{H}$
SUB	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=17 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
SUB	$01 \mathrm{H}, \# 90 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=91 \mathrm{H} ; \mathrm{C}, \mathrm{S}$, and $\mathrm{V}=" 1 "$
SUB	$01 \mathrm{H}, \# 65 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=0 \mathrm{BCH} ; \mathrm{C}$ and $\mathrm{S}=" 1 ", \mathrm{~V}=" 0 "$

In the first example, if working register R1 contains the value 12 H and if register R2 contains the value 03 H , the statement "SUB R1,R2" subtracts the source value $(03 \mathrm{H})$ from the destination value $(12 \mathrm{H})$ and stores the result (0FH) in destination register R1.

SWAP - Swap Nibbles

SWAP dst
Operation: dst (0-3) \leftrightarrow dst $(4-7)$
The contents of the lower four bits and upper four bits of the destination operand are swapped.

Flags: $\quad \mathbf{C}:$ Undefined.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | F0 | R |

Examples: Given: Register $00 \mathrm{H}=3 \mathrm{EH}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{~A} 4 \mathrm{H}$:
SWAP $00 \mathrm{H} \quad \rightarrow \quad$ Register $00 \mathrm{H}=0 \mathrm{E} 3 \mathrm{H}$
SWAP @02H $\rightarrow \quad$ Register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=4 \mathrm{AH}$
In the first example, if general register 00 H contains the value 3EH (00111110B), the statement "SWAP 00 H " swaps the lower and upper four bits (nibbles) in the 00 H register, leaving the value 0E3H (11100011B).

TCM — Test Complement Under Mask

TCM dst,src

Operation: (NOT dst) AND src
This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask). The TCM statement complements the destination operand, which is then ANDed with the source mask. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)		$\begin{aligned} & \text { ode } \\ & \text { src } \end{aligned}$
opc	dst ${ }^{\text {s }}$		2	4	62	r	r
				6	63	r	Ir
opc	src	dst	3	6	64	R	R
				6	65	R	IR
opc	dst	src	3	6	66	R	IM

Examples: Given: $\mathrm{RO}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{R} 2=12 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

TCM	R0,R1	\rightarrow	$\mathrm{RO}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{Z}=$ "1"
TCM	R0,@R1	\rightarrow	R0 $=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R1}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}, \mathrm{Z}=$ " 0 "
TCM	00H,01H	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}, \mathrm{Z}=11 "$
TCM	00H,@01H	\rightarrow	$\begin{aligned} & \text { Register } 00 \mathrm{H}=2 \mathrm{BH} \text {, register } 01 \mathrm{H}=02 \mathrm{H}, \\ & \text { register } 02 \mathrm{H}=23 \mathrm{H}, Z=" 1 " \end{aligned}$
TCM	00H,\#34	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}, \mathrm{Z}=$ "0"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value 02 H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be tested to determine the result of the TCM operation.

TM — Test Under Mask

TM dst,src
Operation: dst AND src
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to " 0 ".
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Examples: Given: R0 $=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R1}=02 \mathrm{H}, \mathrm{R} 2=18 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

TM	$R 0, R 1$	\rightarrow	$R 0=0 C 7 H, R 1=02 H, Z=" 0 "$
TM	$R 0, @ R 1$	\rightarrow	$R 0=0 C 7 H, R 1=02 H$, register $02 H=23 H, Z=" 0 "$
TM	$00 H, 01 H$	\rightarrow	Register $00 H=2 B H$, register $01 \mathrm{H}=02 \mathrm{H}, Z=" 0 "$
TM	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}, \mathrm{Z}=" 0 "$
TM	$00 \mathrm{H}, \# 54 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}, Z=" 1 "$

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value $02 \mathrm{H}(00000010 \mathrm{~B})$, the statement "TM R0,R1" tests bit one in the destination register for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and can be tested to determine the result of the TM operation.

WFI — Wait for Interrupt

WFI

Operation:
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take place during this wait state. The WFI status can be released by an internal interrupt, including a fast interrupt .

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| ppc | 1 | $4 n$ | $3 F$ |

Example: The following sample program structure shows the sequence of operations that follow a "WFI" statement:

XOR — Logical Exclusive OR

XOR	$d s t$, src
Operation:	$d s t \leftarrow d s t$ XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Examples: Given: $\mathrm{R0}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{R} 2=18 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

XOR	$R 0, R 1$	\rightarrow	$R 0=0 C 5 H, R 1=02 H$
XOR	$R 0, @ R 1$	\rightarrow	$R 0=0 E 4 H, R 1=02 H$, register $02 \mathrm{H}=23 \mathrm{H}$
XOR	$00 \mathrm{H}, 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=29 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$
XOR	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}$
XOR	$00 \mathrm{H}, \# 54 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=7 \mathrm{FH}$

In the first example, if working register R0 contains the value 0C7H and if register R1 contains the value 02 H , the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and stores the result $(0 \mathrm{C} 5 \mathrm{H})$ in the destination register R0.

7

CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for the S3C8245/C8249 by an external crystal can range from 1 MHz to 10 MHz . The maximum CPU clock frequency is 10 MHz . The $X_{\mathbb{I N}^{\prime}}$ and $X_{\text {OUT }}$ pins connect the external oscillator or clock source to the on-chip clock circuit.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

- External crystal or ceramic resonator oscillation source (or an external clock source)
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)
- System clock control register, CLKCON
- Oscillator control register, OSCCON and STOP control register, STPCON

Figure 7-1. Main Oscillator Circuit (Crystal or Ceramic Oscillator)

Figure 7-2. Main Oscillator Circuit (RC Oscillator)

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

- In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too when the sub-system oscillator is running and watch timer is operating with sub-system clock.
- In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/ counters. Idle mode is released by a reset or by an external or internal interrupt.

Figure 7-3. System Clock Circuit Diagram

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in the bank 0 of set 1 , address D 4 H . It is read/write addressable and has the following functions:

- Oscillator frequency divide-by value

After the main oscillator is activated, and the $f x x / 16$ (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock speed $\mathrm{fxx} / 8, \mathrm{fxx} / 2$, or $\mathrm{fxx} / 1$.

NOTE: The fxx can be generated by both main-system and sub-system oscillator therefore while main-system stops peripherals can be operated by sub-system.

Figure 7-4. System Clock Control Register (CLKCON)

Oscillator Control Register (OSCCON)
F3H, Set 1, bank 0, R/W

System clock selection bit:
$0=$ Main oscillator select
1 = Subsystem oscillator select

Subsystem oscillator driving ability control bit:
$0=$ Strong driving ability
1 = Normal driving ability

Subsystem oscillator control bit
0 = Subsystem oscillator RUN 1 = Subsystem oscillator STOP

Mainsystem oscillator control bit:
0 = Mainsystem oscillator RUN
1 = Mainsystem oscillator STOP

NOTE: In strong mode the warm-up time is less than 100 ms .
When the CPU is operated with fxt (sub-oscillation clock), it is possible to use the stop instruction but in this case before using stop instruction, you must select fxx/128 for basic timer counter clock input.
Then the oscillation stabilization time is $62.5((1 / 32768) \times 128 \times 16) \mathrm{ms}+100 \mathrm{~ms}$ Here the warm-up time is from the time that the stop release signal activates to the time that basic timer starts counting.

Figure 7-5. Oscillator Control Register (OSCCON)

Figure 7-6. STOP Control Register (STPCON)

nRESET and POWER-DOWN

SYSTEM nRESET

OVERVIEW

During a power-on reset, the voltage at V_{DD} goes to High level and the nRESET pin is forced to Low level. The nRESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure brings the S3C8245/C8249 into a known operating status.

To allow time for internal CPU clock oscillation to stabilize, the nRESET pin must be held to Low level for a minimum time interval after the power supply comes within tolerance. The minimum required time of a reset operation for oscillation stabilization is 1 millisecond.

Whenever a reset occurs during normal operation (that is, when both V_{DD} and nRESET are High level), the nRESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are then reset to their default hardware values

In summary, the following sequence of events occurs during a reset operation:

- All interrupt is disabled.
- The watchdog function (basic timer) is enabled.
- Ports 0-3 and set to input mode.
- Peripheral control and data register settings are disabled and reset to their default hardware values.
- The program counter (PC) is loaded with the program reset address in the ROM, 0100H.
- When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM location 0100 H (and 0101 H) is fetched and executed.

NORMAL MODE nRESET OPERATION

In normal (masked ROM) mode, the Test pin is tied to V_{SS}. A reset enables access to the 16-Kbyte on-chip ROM. (The external interface is not automatically configured).

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing "1010B" to the upper nibble of BTCON.

HARDWARE nRESET VALUES

Table 8-1, 8-2, 8-3 list the reset values for CPU and system registers, peripheral control registers, and peripheral data registers following a reset operation. The following notation is used to represent reset values:
— A "1" or a " 0 " shows the reset bit value as logic one or logic zero, respectively.

- An "x" means that the bit value is undefined after a reset.
- A dash ("-") means that the bit is either not used or not mapped, but read 0 is the bit value.

Table 8-1. S3C8245/C8249 Set 1 Register and Values after nRESET

Register Name	Mnemonic	Address		Bit Values after nRESET							
		Dec	Hex	7	6	5	4	3	2	1	0
LCD Control Register	LCON	208	DOH	0	0	0	0	0	0	0	0
LCD Mode Register	LMOD	209	D1H	0	0	0	0	0	0	0	0
Interrupt Pending Register	INTPND	210	D2H	-	-	-	-	-	0	0	0
Basic Timer Control Register	BTCON	211	D3H	0	0	0	0	0	0	0	0
Clock Control Register	CLKCON	212	D4H	0	0	0	0	0	0	0	0
System Flags Register	FLAGS	213	D5H	X	x	X	X	X	X	0	0
Register Pointer (High Byte)	RP0	214	D6H	1	1	0	0	0	-	-	-
Register Pointer (Low Byte)	RP1	215	D7H	1	1	0	0	1	-	-	-
Stack Pointer (High Byte)	SPH	216	D8H	X	X	X	X	X	X	X	X
Stack Pointer (Low Byte)	SPL	217	D9H	X	X	X	X	X	X	X	X
Instruction Pointer (High Byte)	IPH	218	DAH	X	X	X	X	X	X	X	X
Instruction Pointer (Low Byte)	IPL	219	DBH	X	X	X	X	X	X	X	X
Interrupt Request Register	IRQ	220	DCH	0	0	0	0	0	0	0	0
Interrupt Mask Register	IMR	221	DDH	x	X	X	X	X	X	X	X
System Mode Register	SYM	222	DEH	0	-	-	X	X	X	0	0
Register Page Pointer	PP	223	DFH	0	0	0	0	0	0	0	0

Table 8-2. S3C8245/C8249 Set 1, Bank 0 Register Values after nRESET

Register Name	Mnemonic	Address		Bit Values after nRESET							
		Dec	Hex	7	6	5	4	3	2	1	0
Port 0 Control High Register	POCONH	224	EOH	0	0	0	0	0	0	0	0
Port 0 Control Low Register	P0CONL	225	E1H	0	0	0	0	0	0	0	0
Port 0 interrupt Control Register	POINT	226	E2H	0	0	0	0	0	0	0	0
Port 0 interrupt Pending Register	POPND	227	E3H	0	0	0	0	0	0	0	0
Port 1 Control High Register	P1CONH	228	E4H	0	0	0	0	0	0	0	0
Port 1 Control Low Register	P1CONL	229	E5H	0	0	0	0	0	0	0	0
Port 2 Control High Register	P2CONH	230	E6H	0	0	0	0	0	0	0	0
Port 2 Control Low Register	P2CONL	231	E7H	0	0	0	0	0	0	0	0
Port 3 Control High Register	P3CONH	232	E8H	0	0	0	0	0	0	0	0
Port 3 Control Low Register	P3CONL	233	E9H	0	0	0	0	0	0	0	0
Timer B Data Register (High Byte)	TBDATAH	234	EAH	1	1	1	1	1	1	1	1
Timer B Data Register (Low Byte)	TBDATAL	235	EBH	1	1	1	1	1	1	1	1
Timer B Control Register	TBCON	236	ECH	0	0	0	0	0	0	0	0
Timer A Control Register	TACON	237	EDH	0	0	0	0	0	0	0	0
Timer A Counter Register	TACNT	238	EEH	0	0	0	0	0	0	0	0
Timer A Data Register	TADATA	239	EFH	1	1	1	1	1	1	1	1
Serial I/O Control Register	SIOCON	240	FOH	0	0	0	0	0	0	0	0
Serial I/O Data Register	SIODATA	241	F1H	0	0	0	0	0	0	0	0
Serial I/O Pre-scale Register	SIOPS	242	F2H	0	0	0	0	0	0	0	0
Oscillator Control Register	OSCCON	243	F3H	0	0	0	0	0	0	0	0
STOP Control Register	STPCON	244	F4H	0	0	0	0	0	0	0	0
Port 1 Pull-up Control Register	P1PUP	245	F5H	0	0	0	0	0	0	0	0
Port 0 Data Register	P0	246	F6H	0	0	0	0	0	0	0	0
Port 1 Data Register	P1	247	F7H	0	0	0	0	0	0	0	0
Port 2 Data Register	P2	248	F8H	0	0	0	0	0	0	0	0
Port 3 Data Register	P3	249	F9H	-	-	-	0	0	0	0	0
Port 4 Data Register	P4	250	FAH	0	0	0	0	0	0	0	0
Port 5 Data Register	P5	251	FBH	0	0	0	0	0	0	0	0
Location FCH is factory use only.											
Basic Timer Data Register	BTCNT	253	FDH	0	0	0	0	0	0	0	0
External Memory Timing Register	EMT	254	FEH	0	-	-	-	-	-	-	-
Interrupt Priority Register	IPR	255	FFH	X	x	x	X	x	X	X	x

Table 8-3. S3C8245/P8245 Set 1, Bank 1 Register Values after nRESET

Register Name	Mnemonic	Address		Bit Values after nRESET							
		Dec	Hex	7	6	5	4	3	2	1	0
Port 4 control High register	P4CONH	236	ECH	0	0	0	0	0	0	0	0
Port 4 control Low register	P4CONL	237	EDH	0	0	0	0	0	0	0	0
Port 5 Control High Register	P5CONH	238	EEH	0	0	0	0	0	0	0	0
Port 5 Control Low Register	P5CONL	239	EFH	0	0	0	0	0	0	0	0
Locations FOH is factory use only.											
Timer 0 Control Register	TOCON	241	F1H	0	0	0	-	0	0	0	0
Timer 0 Counter Register (High Byte)	TOCNTH	242	F2H	0	0	0	0	0	0	0	0
Timer 0 Counter Register (Low Byte)	TOCNTL	243	F3H	0	0	0	0	0	0	0	0
Timer 0 Data Register (High Byte)	TODATAH	244	F4H	1	1	1	1	1	1	1	1
Timer 0 Data Register (Low Byte)	TODATAL	245	F5H	1	1	1	1	1	1	1	1
Voltage Level Detector Control Register	VLDCON	246	F6H	0	0	0	0	0	0	0	0
AD Converter Control Register	ADCON	247	F7H	-	0	0	0	0	0	0	0
AD Converter Data Register (High Byte)	ADDATAH	248	F8H	X	X	x	X	x	X	X	x
AD Converter Data Register (Low Byte)	ADDATAL	249	F9H	X	X	X	X	X	X	X	X
Watch Timer Control Register	WTCON	250	FAH	0	0	0	0	0	0	0	0
Timer 1 Control Register	T1CON	251	FBH	0	0	0	0	0	0	0	0
Timer 1 Counter Register (High Byte)	T1CNTH	252	FCH	0	0	0	0	0	0	0	0
Timer 1 Counter Register (Low Byte)	T1CNTL	253	FDH	0	0	0	0	0	0	0	0
Timer 1 Data Register (High Byte)	T1DATAH	254	FEH	1	1	1	1	1	1	1	1
Timer 1 Data Register (Low Byte)	T1DATAL	255	FFH	1	1	1	1	1	1	1	1

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than $3 \mu \mathrm{~A}$. All system functions stop when the clock "freezes", but data stored in the internal register file is retained. Stop mode can be released in one of two ways: by a reset or by interrupts, for more details see Figure 7-3.

NOTE

Do not use stop mode if you are using an external clock source because $X_{\mathbb{I}}$ input must be restricted internally to V_{SS} to reduce current leakage.

Using nRESET to Release Stop Mode

Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral control registers are reset to their default hardware values and the contents of all data registers are retained. A reset operation automatically selects a slow clock fxx/16 because CLKCON. 3 and CLKCON. 4 are cleared to 'OOB'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program instruction stored in ROM location 0100H (and 0101H)

Using an External Interrupt to Release Stop Mode

External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can use to release Stop mode in a given situation depends on the microcontroller's current internal operating mode. The external interrupts in the S3C8245/C8249 interrupt structure that can be used to release Stop mode are:
— External interrupts P0.0-P0.7 (INT0-INT7)
Please note the following conditions for Stop mode release:

- If you release Stop mode using an external interrupt, the current values in system and peripheral control registers are unchanged except STPCON register.
- If you use an internal or external interrupt for stop mode release, you can also program the duration of the oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before entering stop mode.
- When the Stop mode is released by external interrupt, the CLKCON. 4 and CLKCON. 3 bit-pair setting remains unchanged and the currently selected clock value is used.
- The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service routine, the instruction immediately following the one that initiated Stop mode is executed.

Using an Internal Interrupt to Release Stop Mode

Activate any enabled interrupt, causing stop mode to be released. Other things are same as using external interrupt.

How to Enter into Stop Mode

There are two ways to enter into Stop mode:

1. Handling OSCCON register.
2. Handling STPCON register then writing Stop instruction (keep the order).

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was entered.

There are two ways to release idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON. 4 and CLKCON. 3 are cleared to '00B'. If interrupts are masked, a reset is the only way to release idle mode.
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle mode, the CLKCON. 4 and CLKCON. 3 register values remain unchanged, and the currently selected clock value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction immediately following the one that initiated idle mode is executed.

I/O PORTS

OVERVIEW

The S3C8245/C8249 microcontroller has two nibble-programmable and four bit-programmable I/O ports, P0-P5. The port 3 is a 5 -bit port and the others are 8 -bit ports. This gives a total of $45 \mathrm{I} / \mathrm{O}$ pins. Each port can be flexibly configured to meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.

Table 9-1 gives you a general overview of the S3C8245/C8249 I/O port functions.

Table 9-1. S3C8245/C8249 Port Configuration Overview

Port	Configuration Options
0	1-bit programmable I/O port. Schmitt trigger input or output mode selected by software; software assignable pull-up. P0.0-P0.7 can be used as inputs for external interrupts INT0-INT7 (with noise filter and interrupt control).
1	1-bit programmable I/O port. Input or output mode selected by software; open-drain output mode can be selected by software; software assignable pull-up. Alternately P1.0-P1.7 can be used as SI, SO, SCK, BUZ, T1CAP, T1CLK, T1OUT, T1PWM.
2	1-bit programmable I/O port. Normal input and AD input or output mode selected by software; software assignable pull-up.
3	1-bit programmable I/O port. Input or push-pull output with software assignable pull-up. Alternately P3.0-P3.3 can be used as TACAP, TACLK, TAOUT, TAPWM, TBPWM.
4	1-bit programmable I/O port. Push-pull or open drain output and input with software assignable pull-up. P4.0-P4.7 can alternately be used as outputs for LCD SEG.
5	1-bit programmable I/O port. Push-pull or open drain output and input with software assignable pull-up. P5.0-P5.7 can alternately be used as outputs for LCD SEG.
2	

PORT DATA REGISTERS

Table 9-2 gives you an overview of the register locations of all four S3C8245/C8249 I/O port data registers. Data registers for ports $0,1,2,3,4$, and 5 have the general format shown in Figure 9-1.

Table 9-2. Port Data Register Summary

Register Name	Mnemonic	Decimal	Hex	Location	R/W
Port 0 data register	P0	246	F6H	Set 1, Bank 0	R/W
Port 1 data register	P1	247	F7H	Set 1, Bank 0	R/W
Port 2 data register	P2	248	F8H	Set 1, Bank 0	R/W
Port 3 data register	P3	249	F9H	Set 1, Bank 0	R/W
Port 4 data register	P4	250	FAH	Set 1, Bank 0	R/W
Port 5 data register	P5	251	FBH	Set 1, Bank 0	R/W

PORT 0

Port 0 is an 8 -bit I/O Port that you can use two ways:

- General-purpose I/O
- External interrupt inputs for INT0-INT7

Port 0 is accessed directly by writing or reading the port 0 data register, P 0 at location F 6 H in set 1 , bank 0 .

Port 0 Control Register (POCONH, POCONL)

Port 0 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0 : P0CONL (low byte, E1H) and P0CONH (high byte, E0H).

When you select output mode, a push-pull circuit is automatically configured. In input mode, three different selections are available:

- Schmitt trigger input with interrupt generation on falling signal edges.
- Schmitt trigger input with interrupt generation on rising signal edges.
- Schmitt trigger input with interrupt generation on falling/rising signal edges.

Port 0 Interrupt Enable and Pending Registers (POINT, POPND)

To process external interrupts at the port 0 pins, two additional control registers are provided: the port 0 interrupt enable register POINT (E2H, set 1, bank 0) and the port 0 interrupt pending register POPND (E3H, set 1, bank 0).

The port 0 interrupt pending register POPND lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects interrupt requests by polling the POPND register at regular intervals.

When the interrupt enable bit of any port 0 pin is " 1 ", a rising or falling signal edge at that pin will generate an interrupt request. The corresponding POPND bit is then automatically set to " 1 " and the IRQ level goes low to signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must the clear the pending condition by writing a " 0 " to the corresponding POPND bit.

Figure 9-1. Port 0 High-Byte Control Register (POCONH)

Figure 9-2. Port 0 Low-Byte Control Register (POCONL)

Figure 9-3. Port 0 Interrupt Control Register (POINT)

Figure 9-4. Port 0 Interrupt Pending Register (POPND)

PORT 1

Port 1 is an 8 -bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading the port 1 data register, P1 at location F7H in set 1, bank 0 . P1.0-P1.7 can serve inputs, as outputs (push pull or open-drain) or you can configure the following alternative functions:

- Low-byte pins (P1.0-P1.3): T1CAP, T1CLK, T1OUT, T1PWM
- High-byte pins (P1.4-P1.7): SCK, SI, SO and BUZ

Port 1 Control Register

Port 1 has two 8-bit control registers: P1CONH for P1.4-P1.7 and P1CONL for P1.0-P1.3. A reset clears the P1CONH and P1CONL registers to " 00 H ", configuring all pins to input mode. You use control registers settings to select input or output mode (push-pull or open drain) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 1 control registers must also be enabled in the associated peripheral module.

Port 1 Pull-up Resistor Enable Register (P1PUP)

Using the port 1 pull-up resistor enable register, P1PUP (F5H, set 1, bank 0), you can configure pull-up resistors to individual port 1 pins.

NOTE: When use this port 1, user must be care of the pull-up resistance status.

Figure 9-5. Port 1 High-Byte Control Register (P1CONH)

Port 1 Control Register, Low Byte (P1CONL) E5H, Set 1, Bank 0, R/W

P1CONL bit-pair pin configuration settings:
00 Input mode (T1CAP, T1CLK)
01 Output mode, open-drain
10 Alternative function (T1OUT, T1PWM, other pins are push-pull are push-pull output mode)
11 Output mode, push-pull
NOTE: When use this port 1, user must be care of the pull-up resistance status.

Figure 9-6. Port 1 Low-Byte Control Register (P1CONL)

Figure 9-7. Port 1 Pull-up Control Register (P1PUP)

PORT 2

Port 2 is an 8-bit I/O port that can be used for general-purpose I/O as A/D converter inputs, ADC0-ADC7. The pins are accessed directly by writing or reading the port 2 data register, P 2 at location F 8 H in set 1 , bank 0.

To individually configure the port 2 pins P2.0-P2.7, you make bit-pair settings in two control registers located in set 1, bank 0: P2CONL (low byte, E7H) and P2CONH (high byte, E6H). In input mode, ADC or external reference voltage input are also available.

Port 2 Control Registers

Two 8-bit control registers are used to configure port 2 pins: P2CONL (E7H, set 1, Bank 0) for pins P2.0-P2.3 and P2CONH (E6H, set 1, Bank 0) for pins P2.4-P2.7. Each byte contains four bit-pairs and each bit-pair configures one port 2 pin. The P2CONH and the P2CONL registers also control the alternative functions.

Port 2 Control Register, High Byte (P2CONH) E6H, Set 1, Bank 0, R/W

P2CONH bit-pair pin configuration:
00 Input mode
01 Output mode, pull-up
10 Alternative function (ADC \& VLD External input ENABLE, ADCEN signal Gen.)
11 Output mode, push-pull

NOTE: If a pin is enabled for ADC mode by ADCEN or ADC \& VLD ENABLE signal, normal I/O and pull-up resistance are disabled. When pins are enabled for ADC mode, the pins can be selected for ADC input by ADCON.6. 5. 4.
And the P2.7 can be used for VLD external input.

Figure 9-8. Port 2 High-Byte Control Register (P2CONH)

Figure 9-9. Port 2 Low-Byte Control Register (P2CONL)

PORT 3

Port 3 is an 5-bit I/O port with individually configurable pins. Port 3 pins are accessed directly by writing or reading the port 3 data register, P3 at location F9H in set 1, bank 0. P3.0-P3.3 can serve as inputs (with or without pull-ups), as push-pull outputs, or you can configure the following alternative functions:

- TACAP, TACLK, TAOUT, TAPWM and TBPWM

Port 3 Control Registers

Port 3 has two 8-bit control registers: P3CONH for P3.4 and P3CONL for P3.0-P3.3. A reset clears the P3CONH and P3CONL registers to " 00 H ", configuring all pins to input mode. You use control registers settings to select input or output mode, enable pull-up resistors, and enable the alternative functions.

When programming this port, please remember that any alternative peripheral I/O function you configure using the port 3 control registers must also be enabled in the associated peripheral module.

Figure 9-10. Port 3 High-Byte Control Register (P3CONH)

Figure 9-11. Port 3 Low-Byte Control Register (P3CONL)

PORT 4

Port 4 is an 8-bit I/O port with individually configurable pins. Port 4 pins are accessed directly by writing or reading the port 4 data register, P4 at location FAH in set 1, bank 0. P4.0-P4.7 can serve as inputs (with or without pullups), as output (open drain or push-pull). And, they can serve as segment pins for LCD, also.

Port 4 Control Registers

Port 4 has two 8-bit control registers: P4CONH for P4.4-P4.7 and P4CONL for P4.0-P4.3. A reset clears the P 4 CONH and P 4 CONL registers to " 00 H ", configuring all pins to input mode.

Port 4 Control Register, High Byte (P4CONH) ECH, Set 1, Bank 1, R/W

P4CONH bit-pair pin configuration settings:
00 Input mode

01 Input mode, pull-up
10 Opendrain output mode
11 Output mode, push-pull
NOTE: If LCD is enabled by LCON.5, SEG signal go out otherwise port $4 \mathrm{I} / 0$ can be selected.

Figure 9-12. Port 4 High-Byte Control Register (P4CONH)

Figure 9-13. Port 4 Low-Byte Control Register (P4CONL)

PORT 5

Port 5 is an 8-bit I/O port with individually configurable pins. Port 5 pins are accessed directly by writing or reading the port 5 data register, P5 at location FBH in set 1, bank 0. P5.0-P5.7 can serve as inputs (with without pull-ups), as output (open drain or push-pull). And, they can serve as segment pins for LCD also.

Port 5 Control Registers

Port 5 has two 8-bit control registers: P5CONH for P5.4-P5.7 and P5CONL for P5.0-P5.3. A reset clears the P 5 CONH and P 5 CONL registers to " 00 H ", configuring all pins to input mode.

Port 5 Control Register, High Byte (P5CONH) EEH, Set 1, Bank 1, R/W

P5CONH bit-pair pin configuration settings:

00	Input mode
01	Input mode, pull-up
10	Opendrain output mode
11	Output mode, push-pull

NOTE: If LCD is enabled by LCON.7, SEG signal go out otherwise port $5 \mathrm{I} / 0$ can be selected.

Figure 9-14. Port 5 High-Byte Control Register (P5CONH)

Figure 9-15. Port 5 Low-Byte Control Register (P5CONL)

NOTES

BASIC TIMER

OVERVIEW

S3C8245/C8249 has an 8-bit basic timer .

BASIC TIMER (BT)

You can use the basic timer (BT) in two different ways:

- As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction, or
- To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

- Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer
- 8-bit basic timer counter, BTCNT (set 1, Bank 0, FDH, read-only)
- Basic timer control register, BTCON (set 1, D3H, read/write)

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1, address D3H, and is read/write addressable using Register addressing mode.

A reset clears BTCON to " 00 H ". This enables the watchdog function and selects a basic timer clock frequency of fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register control bits BTCON.7-BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.

Figure 10-1. Basic Timer Control Register (BTCON)

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7-BTCON. 4 to any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to "00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by the current CLKCON register setting), divided by 4096, as the BT clock.

The MCU is reseted whenever a basic timer counter overflow occurs, During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occuring, To do this, the BTCNT value must be cleared (by writing a "1" to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal operation, the basic timer overflow loop (a bit 7 overflow of the 8 -bit basic timer counter, BTCNT) is always broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop mode has been released by an external interrupt.

In stop mode, whenever a reset or an external interrupt occurs, the oscillator starts.. The BTCNT value then starts increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt). When BTCNT. 4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume the normal operation.

In summary, the following events occur when stop mode is released:

1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and oscillation starts.
2. If a power-on reset occurred, the basic timer counter will increase at the rate of $\mathrm{fxx} / 4096$. If an interrupt is used to release stop mode, the BTCNT value increases at the rate of the preset clock source.
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.
4. When a BTCNT. 4 overflow occurs, the normal CPU operation resumes.

NOTE: During a power-on reset operation, the CPU is idle during the required oscillation stabilization interval (until bit 4 of the basic timer counter overflows).

Figure 10-2. Basic Timer Block Diagram

8-BIT TIMER A/B

8-BIT TIMER A

OVERVIEW

The 8-bit timer A is an 8-bit general-purpose timer/counter. Timer A has three operating modes, one of which you select using the appropriate TACON setting:

- Interval timer mode (Toggle output at TAOUT pin)
- Capture input mode with a rising or falling edge trigger at the TACAP pin
- PWM mode (TAPWM)

Timer A has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, or 64) with multiplexer
- External clock input pin (TACLK)
- 8-bit counter (TACNT), 8-bit comparator, and 8-bit reference data register (TADATA)
- I/O pins for capture input (TACAP) or PWM or match output (TAPWM, TAOUT)
- Timer A overflow interrupt (IRQ0, vector E2H) and match/capture interrupt (IRQ0, vector EOH) generation
- Timer A control register, TACON (set 1, EDH, read/write)

FUNCTION DESCRIPTION

Timer A Interrupts (IRQ0, Vectors E0H and E2H)

The timer A module can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/ capture interrupt (TAINT). TAOVF is interrupt level IRQ0, vector E2H. TAINT also belongs to interrupt level IRQ0, but is assigned the separate vector address, EOH.

Pending condition of timer A interrupts (overflow \& match/capture) can be cleared automatically by hardware where the interrupts are enabled. Otherwise pending condition must be cleared manually by software.

Interval Timer Function

The timer A module can generate an interrupt: the timer A match interrupt (TAINT). TAINT belongs to interrupt level IRQ0, and is assigned the separate vector address, EOH.

When timer A match interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

In interval timer mode, a match signal is generated and TAOUT is toggled when the counter value is identical to the value written to the TA reference data register, TADATA. The match signal generates a timer A match interrupt (TAINT, vector EOH) and clears the counter.

If, for example, you write the value 10 H to TADATA and 0 AH to TACON, the counter will increment until it reaches 10 H . At this point, the TA interrupt request is generated, the counter value is reset, and counting resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the TAPWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer A data register. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00 H .

Although timer A overflow interrupt is occurred, this interrupt is not typically used in PWM-type applications. Instead, the pulse at the TAPWM pin is held to Low level as long as the reference data value is less than or equal to (\leq) the counter value and then the pulse is held to High level for as long as the data value is greater than ($>$) the counter value. One pulse width is equal to $t_{\text {CLK }} \cdot 256$.

Capture Mode

In capture mode, a signal edge that is detected at the TACAP pin opens a gate and loads the current counter value into the TA data register. You can select rising or falling edges to trigger this operation.

Timer A also gives you capture input source: the signal edge at the TACAP pin. You select the capture input by setting the value of the timer A capture input selection bit in the port 3 control register, P3CONL, (set 1, bank 0, E9H). When P3CONL.7.6 is 00, the TACAP input or normal input is selected. When P3CONL.7.6 is set to 11, normal output is selected.

Both kinds of timer A interrupts can be used in capture mode: the timer A overflow interrupt is generated whenever a counter overflow occurs; the timer A match/capture interrupt is generated whenever the counter value is loaded into the TA data register.

By reading the captured data value in TADATA, and assuming a specific value for the timer A clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the TACAP pin.

TIMER A CONTROL REGISTER (TACON)

You use the timer A control register, TACON, to

- Select the timer A operating mode (interval timer, capture mode, or PWM mode)
- Select the timer A input clock frequency
- Clear the timer A counter, TACNT
- Enable the timer A overflow interrupt or timer A match/capture interrupt
- Clear timer A match/capture interrupt pending conditions

TACON is located in set 1 , Bank 0 at address EDH, and is read/write addressable using Register addressing mode.
A reset clears TACON to ' $00 \mathrm{H}^{\prime}$ '. This sets timer A to normal interval timer mode, selects an input clock frequency of $\mathrm{fxx} / 1024$, and disables all timer A interrupts. You can clear the timer A counter at any time during normal operation by writing a "1" to TACON.3.

The timer A overflow interrupt (TAOVF) is interrupt level IRQ0 and has the vector address E2H. When a timer A overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

Figure 11-1. Timer A Control Register (TACON)

BLOCK DIAGRAM

Figure 11-2. Timer A Functional Block Diagram

8-BIT TIMER B

OVERVIEW

The S3C8245/C8249 micro-controller has an 8-bit counter called timer B. Timer B, which can be used to generate the carrier frequency of a remote controller signal.
Pending condition of timer B is cleared automatically by hardware.
Timer B has two functions:

- As a normal interval timer, generating a timer B interrupt at programmed time intervals.
- To supply a clock source to the 16-bit timer/counter module, timer 0 , for generating the timer 0 overflow interrupt.

NOTES:

1. The value of the TBDATAL register is loaded into the 8 -bit counter when the operation of the timer B starts.

If a borrow occurs in the counter, the value of the TBDATAH register is loaded into the 8 -bit counter.
However, if the next borrow occurs, the value of the TBDATAL register is loaded into the 8 -bit counter.
2. Timer B input clock must be slower than CPU clock.

Figure 11-3. Timer B Functional Block Diagram

Figure 11-4. Timer B Control Register (TBCON)

Figure 11-5. Timer B Data Registers (TBDATAH/L)

TIMER B PULSE WIDTH CALCULATIONS

To generate the above repeated waveform consisted of low period time, $\mathrm{t}_{\text {LOW }}$, and high period time, $\mathrm{t}_{\text {HIGH }}$. When TBOF $=0$,
$t_{\text {LOW }}=($ TBDATAL +2$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAL $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
$\mathrm{t}_{\mathrm{HIGH}}=($ TBDATAH +2$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAH $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
When TBOF = 1 ,
$t_{\text {LOW }}=($ TBDATAH +2$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAH $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
$t_{\text {HIGH }}=($ TBDATAL +2$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAL $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.

To make $\mathrm{t}_{\text {LOW }}=24$ us and $\mathrm{t}_{\mathrm{HIGH}}=15 \mathrm{us} . \mathrm{f}_{\mathrm{OSC}}=4 \mathrm{MHz}, \mathrm{fx}=4 \mathrm{MHz} / 4=1 \mathrm{MHz}$

$$
\begin{aligned}
& \text { When TBOF }=0, \\
& \qquad \begin{array}{l}
t_{\text {LOW }}=24 \text { us }=(\text { TBDATAL }+2) / f x=(\text { TBDATAL }+2) \times 1 u s, \text { TBDATAL }=22 . \\
t_{\text {HIGH }}=15 \text { us }=(\text { TBDATAH }+2) / f x=(\text { TBDATAH }+2) \times 1 u s, \text { TBDATAH }=13 .
\end{array}
\end{aligned}
$$

When TBOF = 1 ,

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{HIGH}}=15 \mathrm{us}=(\text { TBDATAL }+2) / \mathrm{fx}=(\text { TBDATAL }+2) \times 1 \mathrm{us}, \text { TBDATAL }=13 . \\
& \mathrm{t}_{\mathrm{LOW}}=24 \mathrm{us}=(\text { TBDATAH }+2) / \mathrm{fx}=(\text { TBDATAH }+2) \times 1 \mathrm{us}, \text { TBDATAH }=22 .
\end{aligned}
$$

Figure 11-6. Timer B Output Flip-Flop Waveforms in Repeat Mode

This example sets Timer B to the repeat mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a $38 \mathrm{kHz}, 1 / 3$ Duty carrier frequency. The program parameters are:

37.9 kHz 1/3 Duty

- Timer B is used in repeat mode
- Oscillation frequency is $4 \mathrm{MHz}(0.25 \mu \mathrm{~s})$
- TBDATAH $=8.795 \mu \mathrm{~s} / 0.25 \mu \mathrm{~s}=35.18$, TBDATAL $=17.59 \mu \mathrm{~s} / 0.25 \mu \mathrm{~s}=70.36$
- Set P3.0 to TBPWM mode.

START	ORG	0100H	Reset address
	DI		
	-		
	-		
	LD	TBDATAL,\#(70-2)	Set $17.5 \mu \mathrm{~s}$
	LD	TBDATAH,\#(35-2)	Set $8.75 \mu \mathrm{~s}$
	LD	TBCON,\#00000110B	Clock Source $\leftarrow \mathrm{fxx}$
			Disable Timer B interrupt.
			Select repeat mode for Timer B.
			Start Timer B operation.
			Set Timer B Output flip-flop (TBOF) high.
	LD	P3CONL,\#02H	Set P3.0 to TBPWM mode.
			This command generates $38 \mathrm{kHz}, 1 / 3$ duty pulse signal through P3.0.

PROGRAMMING TIP - To generate a one pulse signal through P3.0

This example sets Timer B to the one shot mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 40μ s width pulse. The program parameters are:

- Timer B is used in one shot mode
- Oscillation frequency is 4 MHz (1 clock $=0.25 \mu \mathrm{~s}$)
— TBDATAH $=40 \mu \mathrm{~s} / 0.25 \mu \mathrm{~s}=160$, TBDATAL $=1$
- Set P3.0 to TBPWM mode

12
 16-BIT TIMER 0/1

16-BIT TIMER 0

OVERVIEW

The 16 -bit timer 0 is an 16 -bit general-purpose timer. Timer 0 has the interval timer mode by using the appropriate TOCON setting.

Timer 0 has the following functional components:

- Clock frequency divider (fxx divided by $256,64,8$ or 1) with multiplexer
- TBOF (from timer B) is one of the clock frequencies.
- 16-bit counter (TOCNTH/L), 16-bit comparator, and 16-bit reference data register (TODATAH/L)
- Timer 0 interrupt (IRQ2, vector E6H) generation
- Timer 0 control register, T0CON (set 1, Bank 1, F1H, read/write)

FUNCTION DESCRIPTION

Interval Timer Function

The timer 0 module can generate an interrupt, the timer 0 match interrupt (TOINT). TOINT belongs to interrupt level IRQ2, and is assigned the separate vector address, E6H.

The TOINT pending condition is automatically cleared by hardware when it has been serviced. Even though TOINT is disabled, the application's service routine can detect a pending condition of TOINT by the software and execute it's sub-routine. When this case is used, the TOINT pending bit must be cleared by the application subroutine by writing a " 0 " to the TOCON. 0 pending bit.

In interval timer mode, a match signal is generated when the counter value is identical to the values written to the T0 reference data registers, TODATAH/L. The match signal generates a timer 0 match interrupt (TOINT, vector E4H) and clears the counter.

If, for example, you write the value 0010 H to TODATAH/L and OFH to TOCON, the counter will increment until it reaches 10 H . At this point, the T0 interrupt request is generated, the counter value is reset, and counting resumes.

TIMER 0 CONTROL REGISTER (TOCON)

You use the timer 0 control register, TOCON, to

- Enable the timer 0 operating (interval timer)
- Select the timer 0 input clock frequency
- Clear the timer 0 counter, TOCNT
- Enable the timer 0 interrupt and clear timer 0 interrupt pending condition

TOCON is located in set 1 , at address F 1 H , and is read/write addressable using register addressing mode.
A reset clears TOCON to " 00 H ". This sets timer 0 to disable interval timer mode, selects the TBOF, and disables timer 0 interrupt. You can clear the timer 0 counter at any time during normal operation by writing a "1" to TOCON. 3

To enable the timer 0 interrupt (IRQ2, vector E6H), you must write TOCON.2, and TOCON. 1 to "1". To generate the exact time interval, you should write TOCON. 3 and 0 , which cleared counter and interrupt pending bit. To detect an interrupt pending condition when TOINT is disabled, the application program polls pending bit, TOCON.O. When a "1" is detected, a timer 0 interrupt is pending. When the TOINT sub-routine has been serviced, the pending condition must be cleared by software by writing a " 0 " to the timer 0 interrupt pending bit, TOCON. 0 .

Timer 0 Control Registers (TOCON)
F1H, Set 1, Bank 1, R/W

MSB | .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LSB | | | | | | | |

Timer 0 input clock selection bits: $000=$ TBOF
$010=\mathrm{fxx} / 256$
$100=\mathrm{fxx} / 64$
$110=\mathrm{fxx} / 8$
$x x 1=f x x$

Timer 0 interrupt pending bit:
$0=$ No interrupt pending
$0=$ Clear pending bit (when write)
$1=$ Interrupt is pending
Timer 0 interrupt enable bit:
0 = Disable interrupt
1 = Enable interrupt
Timer 0 count enable bit:
$0=$ Disable counting operation
1 = Enable counting operation

Timer 0 counter clear bit:
$0=$ No affect
1 = Clear the timer 0 counter (when write)

NOTE: For normal operation TOCON. 3 bit must be set 1.

Figure 12-1. Timer 0 Control Register (TOCON)

BLOCK DIAGRAM

Figure 12-2. Timer 0 Functional Block Diagram

Timer 0 Counter Register, High-Byte (TOCNTH) F2H, Set 1, Bank 1, R

MSB

.7	.6	.5	.4	.3	.2	.1	.0

Reset Value: 00H
Timer 0 Counter Register, Low-Byte (TOCNTL) F3H, Set 1, Bank 1, R

Reset Value: 00H

Figure 12-3. Timer 0 Counter Register (TOCNTH/L)

Timer 0 Data Register, High-Byte (TODATAH) F4H, Set 1, Bank 1, R/W

Reset Value: FFh
Timer 0 Data Register, Low-Byte (TODATAL)
F5H, Set 1, Bank 1, R/W
MSB

Figure 12-4. Timer 0 Data Register (TODATAH/L)

16-BIT TIMER 1

OVERVIEW

The 16 -bit timer 1 is an 16 -bit general-purpose timer/counter. Timer 1 has three operating modes, one of which you select using the appropriate T1CON setting:

- Interval timer mode (Toggle output at T1OUT pin)
- Capture input mode with a rising or falling edge trigger at the T1CAP pin
- PWM mode (T1PWM)

Timer 1 has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer
- External clock input pin (T1CLK)
- 16-bit counter (T1CNTH/L), 16-bit comparator, and 16-bit reference data register (T1DATAH/L)
- I/O pins for capture input (T1CAP), or PWM or match output (T1PWM, T1OUT)
- Timer 1 overflow interrupt (IRQ3, vector EAH) and match/capture interrupt (IRQ3, vector E8H) generation
- Timer 1 control register, T1CON (set 1, FBH, Bank 1, read/write)

FUNCTION DESCRIPTION

Timer 1 Interrupts (IRQ3, Vectors E8H and EAH)

The timer 1 module can generate two interrupts, the timer 1 overflow interrupt (T1OVF), and the timer 1 match/capture interrupt (T1INT). T1OVF is interrupt level IRQ3, vector EAH. T1INT also belongs to interrupt level IRQ3, but is assigned the separate vector address, E8H.
A timer 1 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.
A timer 1 match/capture interrupt, T1INT pending condition is also cleared by hardware when it has been serviced.

Interval Timer Function

The timer 1 module can generate an interrupt: the timer 1 match interrupt (T1INT). T1INT belongs to interrupt level IRQ3, and is assigned the separate vector address, E8H. When a timer 1 measure interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

In interval timer mode, a match signal is generated and T1OUT is toggled when the counter value is identical to the value written to the T1 reference data register, T1DATAH/L. The match signal generates a timer 1 match interrupt (T1INT, vector E8H) and clears the counter.

If, for example, you write the value 0010 H to T1DATAH/L and 06 H to T1CON, the counter will increment until it reaches 0010 H . At this point, the T 1 interrupt request is generated, the counter value is reset, and counting resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T1PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer 1 data register. In PWM mode, however, the match signal does not clear the counter but can generate a match interrupt. The counter runs continuously, overflowing at FFFFH, and then repeat the incrementing from 0000H. Whenever an overflow is occurred, an overflow (OVF) interrupt can be generated.

Although you can use the match or the overflow interrupt in PWM mode, interrupts are not typically used in PWMtype applications. Instead, the pulse at the T1PWM pin is held to Low level as long as the reference data value is less than or equal to (\leq) the counter value and then pulse is held to High level for as long as the data value is greater than ($>$) the counter value. One pulse width is equal to $t_{\text {CLK }}$

Capture Mode

In capture mode, a signal edge that is detected at the T1CAP pin opens a gate and loads the current counter value into the T 1 data register. You can select rising or falling edges to trigger this operation.
Timer 1 also gives you capture input source, the signal edge at the T1CAP pin. You select the capture input by setting the value of the timer 1 capture input selection bit in the port 1 control register low, P1CONL, (set 1 bank 0 , $\mathrm{E} 5 \mathrm{H})$. When P1CONL.1.0 is 00, the T1CAP input or normal input is selected .When P1CONL.1.0 is set to 11, normal output is selected.
Both kinds of timer 1 interrupts can be used in capture mode, the timer 1 overflow interrupt is generated whenever a counter overflow occurs, the timer 1 match/capture interrupt is generated whenever the counter value is loaded into the T1 data register.

By reading the captured data value in T1DATAH/L, and assuming a specific value for the timer 1 clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP pin.

TIMER 1 CONTROL REGISTER (T1CON)

You use the timer 1 control register, T1CON, to

- Select the timer 1 operating mode (interval timer, capture mode, or PWM mode)
- Select the timer 1 input clock frequency
- Clear the timer 1 counter, T1CNTH/L
- Enable the timer 1 overflow interrupt or timer 1 match/capture interrupt
- Clear timer 1 match/capture interrupt pending conditions

T1CON is located in set 1 and Bank 1 at address FBH, and is read/write addressable using Register addressing mode.

A reset clears T1CON to ' $00 \mathrm{H}^{\prime}$ '. This sets timer 1 to normal interval timer mode, selects an input clock frequency of $\mathrm{fxx} / 1024$, and disables all timer 1 interrupts. To disable the counter operation, please set T1CON.7-. 5 to 111B. You can clear the timer 1 counter at any time during normal operation by writing a " 1 " to T1CON.3.
The timer 1 overflow interrupt (T1OVF) is interrupt level IRQ3 and has the vector address EAH. When a timer 1 overflow interrupt occurs and is serviced interrupt (IRQ3, vector E8H), you must write T1CON. 1 to "1". To generate the exact time interval, you should write T1CON by the CPU, the pending condition is cleared automatically by hardware.

To enable the timer 1 match/capture which clear counter and interrupt pending bit. To detect a match/capture or overflow interrupt pending condition when T1INT or T1OVF is disabled, the application program should poll the pending bit. When a " 1 " is detected, a timer 1 match/capture or overflow interrupt is pending.
When her sub-routine has been serviced, the pending condition must be cleared by software by writing a " 0 " to the interrupt pending bit.

Figure 12-5. Timer 1 Control Register (T1CON)

BLOCK DIAGRAM

Figure 12-6. Timer 1 Functional Block Diagram

	Timer 1 Counter Register, High-Byte (T1CNTH) FCH, Set 1, Bank 1, R								
MSB	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0	LSB
						Reset Value: 00 H			
	Timer 1 Counter Register, Low-Byte (T1CNTL) FDH, Set 1, Bank 1, R								
MSB	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0	LSB
						Reset Value: 00 H			

Figure 12-7. Timer 1 Control Register (T1CNTH/L)

Figure 12-8. Timer 1 Data Register (T1DATAH/L)

NOTES

13
 WATCH TIMER

OVERVIEW

Watch timer functions include real-time and watch-time measurement and interval timing for the system clock. To start watch timer operation, set bit1 and bit 6 of the watch timer mode register, WTCON. 1 and 6 , to " 1 ". After the watch timer starts and elapses a time, the watch timer interrupt is automatically set to " 1 ", and interrupt requests commence in 1.955 ms or $0.125,0.25$ and 0.5 -second intervals.

The watch timer can generate a steady $0.5 \mathrm{kHz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}$, or 4 kHz signal to the BUZZER output. By setting WTCON. 3 and WTCON. 2 to " 11 b", the watch timer will function in high-speed mode, generating an interrupt every 1.955 ms . High-speed mode is useful for timing events for program debugging sequences.

The watch timer supplies the clock frequency for the LCD controller ($f_{L C D}$). Therefore, if the watch timer is disabled, the LCD controller does not operate.

- Real-time and Watch-time measurement
- Using a main system or subsystem clock source
- Clock source generation for LCD controller
- Buzzer output frequency generator
- Timing tests in high-speed mode

WATCH TIMER CONTROL REGISTER (WTCON: R/W)

FBH	WTCON. 7	WTCON. 6	WTCON. 5	WTCON. 4	WTCON. 3	WTCON. 2	WTCON. 1	WTCON. 0
nRESET	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$

Table 13-1. Watch Timer Control Register (WTCON): Set 1, Bank 1, FAH, R/W

Bit Name	Values	Function	Address
WTCON. 7	0	Select ($\mathrm{fxx} / 128$) as the watch timer clock	FAH
	1	Select subsystem clock as watch timer clock	
WTCON. 6	0	Disable watch timer interrupt	
	1	Enable watch timer interrupt	
WTCON.5-. 4	0	0.5 kHz buzzer (BUZ) signal output	
	0	1 kHz buzzer (BUZ) signal output	
	$1{ }^{1}$	2 kHz buzzer (BUZ) signal output	
	1	4 kHz buzzer (BUZ) signal output	
WTCON.3-. 2	0	Set watch timer interrupt to 0.5 s .	
	0	Set watch timer interrupt to 0.25 s .	
	$1{ }^{1}$	Set watch timer interrupt to 0.125 s .	
	1	Set watch timer interrupt to 1.955 ms .	
WTCON. 1	0	Disable watch timer, clear frequency dividing circuits	
	1	Enable watch timer	
WTCON. 0	0	Interrupt is not pending, clear pending bit when write	
	1	Interrupt is pending	

NOTE: Watch timer clock frequency (fw) is assumed to be 32.768 kHz .

WATCH TIMER CIRCUIT DIAGRAM

Figure 13-1. Watch Timer Circuit Diagram

NOTES

14
 LCD CONTROLLER/DRIVER

OVERVIEW

The S3C8245/C8249 micro-controller can directly drive an up-to-16-digit (32-segment) LCD panel. The LCD module has the following components:

- LCD controller/driver
- Display RAM ($00 \mathrm{H}-\mathrm{OFH}$) for storing display data in page 4
- 32 segment output pins (SEG0-SEG31)
- Four common output pins (COM0-COM3)
- Three LCD operating power supply pins ($\mathrm{V}_{\mathrm{LC}}-\mathrm{V}_{\mathrm{LC} 2}$)
- LCD bias by voltage booster
- LCD bias by voltage dividing resistors

Bit settings in the LCD mode register, LMOD, determine the LCD frame frequency, duty and bias, and the segment pins used for display output. When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during stop and idle modes.

The LCD control register LCON turns the LCD display on and off and switches current to the charge-pump circuits for the display. LCD data stored in the display RAM locations are transferred to the segment signal pins automatically without program control.

Figure 14-1. LCD Function Diagram

s^MSUNE

LCD CIRCUIT DIAGRAM

NOTE: $\quad f L C D=f w / 2^{6}, f w / 2^{7}, f w / 2^{8}, f w / 2^{9}$

Figure 14-2. LCD Circuit Diagram

LCD RAM ADDRESS AREA

RAM addresses 00 H - OFH of page 4 , or page 2 , according to ROM size, are used as LCD data memory. When the bit value of a display segment is " 1 ", the LCD display is turned on; when the bit value is " 0 ", the display is turned off.

Display RAM data are sent out through segment pins SEG0-SEG31 using a direct memory access (DMA) method that is synchronized with the $\mathrm{f}_{\text {LCD }}$ signal. RAM addresses in this location that are not used for LCD display can be allocated to general-purpose use.

OOH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG0
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG1
		\ldots		
08H	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG16
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG17
09H	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG18
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG19
OAH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG20
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG21
OBH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG22
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG23
OCH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG24
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG25
ODH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG26
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG27
OEH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG28
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG29
OFH	BIT. 3	BIT. 2	BIT. 1	BIT. 0	SEG30
	BIT. 7	BIT. 6	BIT. 5	BIT. 4	SEG31
		$\begin{gathered} \uparrow \\ \text { COM2 } \end{gathered}$		$\underset{\text { COMO }}{\uparrow}$	

Figure 14-3. LCD Display Data RAM Organization

LCD CONTROL REGISTER (LCON), DOH

Table 14-1. LCD Control Register (LCON) Organization

LCON Bit	Setting	Description
LCON.7	0	P5.4-P5.7 I/O is selected
	1	SEG28-SEG31 is selected, P5.4-P5.7 I/O is disabled
LCON.6	0	P5.0-P5.3 I/O is selected
	1	SEG24-SEG27 is selected, P5.0-P5.3 I/O is disabled
LCON.5	0	P4.4-P4.7 I/O is selected
	1	SEG20-SEG23 is selected, P4.4-P4.7 I/O is disabled
	0	P4.0-P4.3 I/O is selected
LCON.3	1	SEG16-SEG19 is selected, P4.0-P4.3 I/O is disabled
	0	This bit is used for internal testing only; always logic zero.
	0	Enable LCD initial circuit (internal bias voltage).
	1	Disable LCD initial circuit for external LCD dividing resistors(external bias voltage).
LCON.0	0	Stop voltage booster(clock stop and cut off current charge path)
	1	Run voltage booster(clock run and turn on current charge path)
	0	LCD output low; turn display off, COM and SEG output Low
	1	Cut off voltage booster (Booster clock disable).

Table 14-2. Relationship of LCON. 0 and LMOD. 3 Bit Settings

LCON.0	LMOD.3	COM0-COM3	SEG0-SEG31
0	x	Output low; LCD display off	Output low; LCD display off
1	0	Output low; LCD display off	Output low; LCD display off
	1	COM output corresponds to display mode	SEG output corresponds to display mode

NOTE: " X " means don't care.

LCD MODE REGISTER (LMOD)

The LCD mode control register LMOD is mapped to RAM addresses D1H.
LMOD controls these LCD functions:

- Duty and bias selection (LMOD.3-LMOD.0)
- LCDCK clock frequency selection (LMOD.5-LMOD.4)

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This is also referred to as the 'frame frequency.' Since LCDCK is generated by dividing the watch timer clock (fw), the watch timer must be enabled when the LCD display is turned on. Reset clears the LMOD register values to logic zero. This produces the following LCD control settings:

- Display is turned off
- LCDCK frequency is the watch timer clock (fw)/2 $2^{9}=64 \mathrm{~Hz}$

The LCD display can continue to operate during idle and stop modes if a subsystem clock is used as the watch timer source. The LCD output voltage level is always 3 V , supplied by the voltage booster.

Table 14-3. LCD Clock Signal (LCDCK) Frame Frequency

LCDCK Frequency	Static	$\mathbf{1 / 2}$ Duty	$\mathbf{1 / 3}$ Duty	1/4 Duty
$\mathrm{fw} / 2^{9}(64 \mathrm{~Hz})$	64	32	21	16
$\mathrm{fw} / 2^{8}(128 \mathrm{~Hz})$	128	64	43	32
$\mathrm{fw} / 2^{7}(256 \mathrm{~Hz})$	256	128	85	64
$\mathrm{fw} / 2^{6}(512 \mathrm{~Hz})$	512	256	171	128

NOTE: 'fw' is the watch timer clock frequency of 32.768 kHz .

Table 14-4. LCD Mode Control Register (LMOD) Organization, D1H

LMOD. 7	Always logic zero.
LMOD. 6	Always logic zero.

LMOD.5	LMOD.4	LCD Clock (LCDCK) Frequency
0	0	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{9}=64 \mathrm{~Hz}$
0	1	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{8}=128 \mathrm{~Hz}$
1	0	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{7}=256 \mathrm{~Hz}$
1	1	32.768 kHz watch timer clock $(\mathrm{fw}) / 2^{6}=512 \mathrm{~Hz}$

LMOD.3	LMOD.2	LMOD.1	LMOD.0	Duty and Bias Selection for LCD Display
0	x	x	x	LCD display off (COM and SEG output Low)
1	0	0	0	$1 / 4$ duty, $1 / 3$ bias
1	0	0	1	$1 / 3$ duty, $1 / 3$ bias
1	0	1	1	$1 / 3$ duty, $1 / 2$ bias
1	0	1	0	$1 / 2$ duty, $1 / 2$ bias
1	1	x	x	Static

NOTE: ' x ' means don't care.

Table 14-5. Maximum Number of Display Digits per Duty Cycle

LCD Duty	LCD Bias	COM Output Pins	Maximum Seg Display
Static	Static	COM0	32
$1 / 2$	$1 / 2$	COM0-COM1	32×2
$1 / 3$	$1 / 2$	COM0-COM2	32×3
$1 / 3$	$1 / 3$	COM0-COM2	32×3
$1 / 4$	$1 / 3$	COM0-COM3	32×4

LCD DRIVE VOLTAGE

The LCD display is turned on only when the voltage difference between the common and segment signals is greater than $\mathrm{V}_{\mathrm{LCD}}$. The LCD display is turned off when the difference between the common and segment signal voltages is less than $\mathrm{V}_{\mathrm{LCD}}$. The turn-on voltage, $+\mathrm{V}_{\mathrm{LCD}}$ or $-\mathrm{V}_{\mathrm{LCD}}$, is generated only when both signals are the selected signals of the bias. Table 14-7 shows LCD drive voltages for static mode, $1 / 2$ bias, and $1 / 3$ bias.

Table 14-6. LCD Drive Voltage Values

LCD Power Supply	Static Mode	$\mathbf{1 / 2}$ Bias	$\mathbf{1 / 3}$ Bias
$\mathrm{V}_{\mathrm{LC} 2}$	$\mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{LCD}}$
$\mathrm{V}_{\mathrm{LC} 1}$	-	$\mathrm{V}_{\mathrm{LCD}}$	$2 / 3 \mathrm{~V}_{\mathrm{LCD}}$
$\mathrm{V}_{\mathrm{LC} 0}$	-	$1 / 2 \mathrm{~V}_{\mathrm{LCD}}$	$1 / 3 \mathrm{~V}_{\mathrm{LCD}}$
V_{sS}	0 V	0 V	0 V

NOTE: The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and segment signal voltage. Therefore, always drive the LCD panel with AC voltage.

LCD SEG/SEG SIGNALS

The 32 LCD segment signal pins are connected to corresponding display RAM locations at $00 \mathrm{H}-0 \mathrm{FH}$.
Bits $0-3$ (and 4-7) of the display RAM are synchronized with the common signal output pins COM0, COM1, COM2, and COM3.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin. When the display bit is " 0 ", a 'no-select' signal is sent to the corresponding segment pin. Each bias has select and noselect signals.

Figure 14-4. Select/No-Select Bias Signals in Static Display Mode

Figure 14-5. Select/No-Select Bias Signals in 1/2 Duty, 1/2 Bias Display Mode

Figure 14-6. Select/No-Select Bias Signals in 1/3 Duty, $1 / 3$ Bias Display Mode

Figure 14-7. LCD Signal and Wave Forms Example in 1/2 Duty, $1 / 2$ Bias Display Mode

Figure 14-8. LCD Signals and Wave Forms Example in $1 / 3$ Duty, $1 / 3$ Bias Display Mode
simsung

Figure 14-9. LCD Signals and Wave Forms Example in 1/4 Duty, $1 / 3$ Bias Display Mode

LCD VOLTAGE DRIVING METHOD

By Voltage Booster

For run the voltage booster

- Make enable the watch timer for $f_{b o o s t e r ~}$
— Set LCON. 2 to "0" and LCON. 1 to "1" for make enable voltage booster
- Recommendable capacitance value is 0.1 uF (CAB, C0, C1, C2)

By Voltage Dividing Resistors (Externally)

For make external voltage dividing resistors

- Make enable the watch timer
— Set LCON. 2 to "1" and LCON. 1 to " 0 " for make disable voltage booster
- Make floating the CA and CB pin
- Recommendable $\mathrm{R}=100 \mathrm{k} \Omega$

Figure 14-10. Voltage Dividing Resistor Circuit Diagram

15

10-BIT ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 10-bit A / D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the eight input channels to equivalent 10-bit digital values. The analog input level must lie between the $A V_{\text {REF }}$ and $A V_{S S}$ values. The A / D converter has the following components:

- Analog comparator with successive approximation logic
- D/A converter logic (resistor string type)
- ADC control register (ADCON)
- Eight multiplexed analog data input pins (ADC0-ADC7)
- 10-bit A/D conversion data output register (ADDATAH/L)
- 10-bit digital input port (Alternately, I/O port.)
- $A V_{\text {REF }}$ and $A V_{S S}$ pins, $A V_{S S}$ is internally connected to $V_{S S}$

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at the first you must set ADCEN signal for ADC input enable at port 2, the pin set with 1 can be used for ADC analog input. And you write the channel selection data in the A/D converter control register ADCON.4-. 7 to select one of the eight analog input pins (ADC0-7) and set the conversion start or enable bit, ADCON.0. The read-write ADCON register is located in set 1, bank 0 , at address F3H. The pins witch are not used for ADC can be used for normal I/O.

During a normal conversion, ADC logic initially sets the successive approximation register to 200 H (the approximate half-way point of an 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6-4) in the ADCON register. To start the A/D conversion, you should set the enable bit, ADCON.0. When a conversion is completed, ADCON.3, the end-of-conversion(EOC) bit is automatically set to 1 and the result is dumped into the ADDATAH/L register where it can be read. The A/D converter then enters an idle state. Remember to read the contents of ADDATAH/L before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

NOTE

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog level at the ADC0-ADC7 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC operation is finished.

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D conversion. Therefore, total of 50 clocks are required to complete an 10-bit conversion: When fxx/8 is selected for conversion clock with an 8 MHz fxx clock frequency, one clock cycle is 1 us. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit $\times 10$ bits + set-up time $=50$ clocks, 50 clock $\times 1$ us $=50 \mu$ at 1 MHz

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located at address F7H in set 1 , bank 0 . It has three functions:

- Analog input pin selection (bits 4, 5, and 6)
- End-of-conversion status detection (bit 3)
- A/D operation start or enable (bit 0)

After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog input pins (ADC0-ADC7) can be selected dynamically by manipulating the ADCON.4-6 bits. And the pins not used for analog input can be used for normal I/O function.

Figure 15-1. A/D Converter Control Register (ADCON)

SAMSUNG

Figure 15-2. A/D Converter Data Register (ADDATAH/L)

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must remain within the range $A V_{S S}$ to $A V_{\text {REF }}$ (usually, $A V_{R E F}=V_{D D}$).

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first conversion bit is always $1 / 2 A V_{\text {REF }}$.

BLOCK DIAGRAM

Figure 15-3. A/D Converter Functional Block Diagram

NOTE: The symbol "R" signifies an offset resistor with a value of from 50Ω to 100Ω.
If this resistor is omitted, the absolute accuracy will be maximum of 3 LSBs.

Figure 15-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy

NOTES

SERIAL I/O INTERFACE

OVERVIEW

Serial I/O module, SIO can interface with various types of external device that require serial data transfer. The components of each SIO function block are:

- 8-bit control register (SIOCON)
- Clock selector logic
- 8-bit data buffer (SIODATA)
- 8-bit prescaler (SIOPS)
- 3-bit serial clock counter
- Serial data I/O pins (SI, SO)
- External clock input/output pins (SCK)

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.

PROGRAMMING PROCEDURE

To program the SIO modules, follow these basic steps:

1. Configure the I / O pins at port $(\mathrm{SO}, \mathrm{SCK}, \mathrm{SI})$ by loading the appropriate value to the P 1 CONH register if necessary.
2. Load an 8-bit value to the SIOCON control register to properly configure the serial I/O module. In this operation, SIOCON. 2 must be set to "1" to enable the data shifter.
3. For interrupt generation, set the serial I/O interrupt enable bit (SIOCON.1) to "1".
4. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON. 3 to 1, the shift operation starts.
5. When the shift operation (transmit/receive) is completed, the SIO pending bit (SIOCON.0) is set to "1" and an SIO interrupt request is generated.

SIO CONTROL REGISTER (SIOCON)

The control register for serial I/O interface module, SIOCON, is located at F0H in set 1, bank 0 . It has the control settings for SIO module.

- Clock source selection (internal or external) for shift clock
- Interrupt enable
- Edge selection for shift operation
- Clear 3-bit counter and start shift operation
- Shift operation (transmit) enable
- Mode selection (transmit/receive or receive-only)
- Data direction selection (MSB first or LSB first)

A reset clears the SIOCON value to " 00 H ". This configures the corresponding module with an internal clock source at the SCK, selects receive-only operating mode, and clears the 3-bit counter. The data shift operation and the interrupt are disabled. The selected data direction is MSB-first.

Serial I/O Module Control Registers (SIOCON)
FOH, Set 1, Bank 0, R/W

Figure 16-1. Serial I/O Module Control Registers (SIOCON)

SIO PRE-SCALER REGISTER (SIOPS)

The control register for serial I/O interface module, SIOPS, is located at F2H in set 1 , bank 0 .
The value stored in the SIO pre-scale registers, SIOPS, lets you determine the SIO clock rate (baud rate) as follows:
Baud rate $=$ Input clock ($f x x / 4$)/(Pre-scaler value +1), or SCK input clock, where the input clock is $f x x / 4$

Figure 16-2. SIO Pre-scale Registers (SIOPS)

BLOCK DIAGRAM

Figure 16-3. SIO Functional Block Diagram

SERIAL I/O TIMING DIAGRAM

Figure 16-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON. $4=0$)

Figure 16-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON. 4 = 1)

17
 VOLTAGE BOOSTER

OVERVIEW

This voltage booster works for the power control of LCD : generates $3 \times \operatorname{VR}(\mathrm{VLC2}), 2 \times \mathrm{VR}(\mathrm{VLC1}), 1 \times \mathrm{VR}(\mathrm{VLC0})$. This voltage booster allows low voltage operation of LCD display with high quality. This voltage booster circuit provides constant LCD contrast level even though battery power supply was lowered.

This voltage booster include voltage regulator, and voltage charge/pump circuit.

FUNCTION DESCRIPTION

The voltage booster has built for driving the LCD. The voltage booster provides the capability of directly connecting an LCD panel to the MCU without having to separately generate and supply the higher voltages required by the LCD panel. The voltage booster operates on an internally generated and regulated LCD system voltage and generates a doubled and a tripled voltage levels to supply the LCD drive circuit. External capacitor are required to complete the power supply circuits.

The V_{DD} power line is regulated to get the $\mathrm{V}_{\mathrm{LC}}(\mathrm{VR})$ level, which become a base level for voltage boosting. Then a doubled and a tripled voltage will be made by capacitor charge and pump circuit.

BLOCK DIAGRAM

Figure 17-1. Voltage Booster Block Diagram

Figure 17-2. Pin Connection Example

SAMSUNF

18

VOLTAGE LEVEL DETECTOR

OVERVIEW

The S3C8245/C8249 micro-controller has a built-in VLD (Voltage Level Detector) circuit which allows detection of power voltage drop or external input level through software. Turning the VLD operation on and off can be controlled by software. Because the IC consumes a large amount of current during VLD operation. It is recommended that the VLD operation should be kept OFF unless it is necessary. Also the VLD criteria voltage can be set by the software. The criteria voltage can be set by matching to one of the 4 kinds of voltage below that can be used.
2.2 V, 2.4 V, 3.0 V or $4.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right.$ reference voltage), or external input level (External reference voltage)

The V_{LD} block works only when VLDCON. 2 is set. If V_{DD} level is lower than the reference voltage selected with VLDCON.1-.0, VLDCON. 3 will be set. If V_{DD} level is higher, VLDCON. 3 will be cleared. When users need to minimize current consumption, do not operate the VLD block.

Figure 18-1. Block Diagram for Voltage Level Detect

VOLTAGE LEVEL DETECTOR CONTROL REGISTER (VLDCON)

The bit 2 of VLDCON controls to run or disable the operation of Voltage level detect. Basically this $\mathrm{V}_{\mathrm{VLD}}$ is set as 2.2 V by system reset and it can be changed in 4 kinds voltages by selecting Voltage Level Detect Control register (VLDCON). When you write 2 bit data value to VLDCON, an established resistor string is selected and the $\mathrm{V}_{\mathrm{VLD}}$ is fixed in accordance with this resistor. Table 18-1 shows specific $\mathrm{V}_{\mathrm{VLD}}$ of 4 levels.

NOTE: The reset value of VLDCON is $\# 00 \mathrm{H}$.

Figure 18-2. Voltage Level Detect Circuit and Control Register

Table 18-1. VLDCON Value and Detection Level

VLDCON .1-. 0	$\mathrm{V}_{\text {VLD }}$
00	2.2 V
01	2.4 V
10	3.0 V
11	4.0 V

19
 ELECTRICAL DATA

OVERVIEW

In this chapter, S3C8245/C8249 electrical characteristics are presented in tables and graphs.
The information is arranged in the following order:

- Absolute maximum ratings
- Input/output capacitance
- D.C. electrical characteristics
- A.C. electrical characteristics
- Oscillation characteristics
- Oscillation stabilization time
- Data retention supply voltage in stop mode
- Serial I/O timing characteristics
- A/D converter electrical characteristics

Table 19-1. Absolute Maximum Ratings
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{DD}		-0.3 to +6.5	V
Input voltage	V_{1}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	V_{O}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Output current high	${ }^{\mathrm{OH}}$	One I/O pin active	- 18	mA
		All I/O pins active	-60	
Output current low	${ }^{\text {IOL}}$	One I/O pin active	+ 30	
		Total pin current for port	+ 100	
Operating temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$		-65 to +150	

Table 19-2. D.C. Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating voltage	$V_{\text {DD }}$	$\mathrm{f}_{\mathrm{CPU}}=10 \mathrm{MHz}$	2.7	-	5.5	V
		$\mathrm{f}_{\mathrm{CPU}}=3 \mathrm{MHz}$	1.8	-	5.5	
Input high voltage	$\mathrm{V}_{\mathrm{H} 1}$	All input pins except $\mathrm{V}_{\mathrm{IH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	
	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{X}_{\mathbb{N}}, \mathrm{XT}_{\mathbb{N}}$	$\mathrm{V}_{\mathrm{DD}}-0.1$	-		
Input low voltage	$\mathrm{V}_{\text {IL1 }}$	All input pins except $\mathrm{V}_{\mathrm{IL} 2}$	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL2 }}$	$\mathrm{X}_{\mathbb{I N},} \mathrm{XT}_{\mathbb{I N}}$			0.1	

Table 19-2. D.C. Electrical Characteristics (Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output high voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ All output pins	$\mathrm{V}_{\mathrm{DD}}{ }^{-1.0}$	-	-	V
Output low voltage	V_{OL}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \quad \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ All output pins	-	-	0.4	
Input high leakage current	${ }_{\text {LIHI }}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{DD}}$ All input pins except ILIH2	-	-		uA
	ILHH	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{DD},} \mathrm{X}_{\mathbb{N},}, \mathrm{XT}_{\mathbb{N}}$			20	
Input low leakage current	LIL1	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ All input pins except lliL2	-	-	-3	
	ILIL2	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, \mathrm{X}_{\mathbb{N}}, \mathrm{XT}_{\mathbb{N},}, \mathrm{nRESET}$			-20	
Output high leakage current	${ }^{\text {LOH }}$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}$ All I/O pins and output pins	-	-	3	
Output low leakage current	LoL	$V_{\text {OUT }}=0 \mathrm{~V}$ All I/O pins and output pins	-	-	-3	
Oscillator feed back resistors	$\mathrm{R}_{\text {osc } 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{X}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{X}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	300	600	1500	k Ω
Pull-up resistor	$\mathrm{R}_{\mathrm{L} 1}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \text { Port } 0,1,2,3,4,5 \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	25	50	100	
	$\mathrm{R}_{\mathrm{L} 2}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { nRESET only } \end{aligned}$	110	210	310	
$\mathrm{V}_{\text {LCO }}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LCo }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(1 / 3$ bias mode)	0.9	1.0	1.15	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(1 / 2$ bias mode $)$	1.4	1.5	1.7	
$\mathrm{V}_{\mathrm{LC} 1}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LC1 }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(1 / 2$ and $1 / 3$ bias mode)	$2 \mathrm{~V}_{\mathrm{LCO}}-0.1$	-	$2 \mathrm{~V}_{\mathrm{LCO}}+0.1$	
$\mathrm{V}_{\text {LC2 }}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LC2 }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(1 / 3$ bias mode $)$	$3 \mathrm{~V}_{\text {LCO }}-0.1$	-	$3 \mathrm{~V}_{\mathrm{LCO}}+0.1$	
COM output voltage deviation	V_{DC}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LC} 2}=3 \mathrm{~V} \\ & \left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{COMi}\right) \\ & \mathrm{IO}= \pm 15 \mu \mathrm{~A}(\mathrm{i}=0-3) \end{aligned}$	-	± 60	± 120	mV
SEG output voltage deviation	$\mathrm{V}_{\text {Ds }}$	$\begin{aligned} & \hline V_{D D}=V_{\text {LC2 }}=3 \mathrm{~V} \\ & \left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{SEGi}\right) \\ & 10= \pm 15 \mu \mathrm{~A}(\mathrm{i}=0-31) \\ & \hline \end{aligned}$	-	± 60	± 120	

NOTE: Low leakage current is absolute value.

Table 19-2. D.C. Electrical Characteristics (Concluded)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply current ${ }^{(1)}$	$\mathrm{I}_{\mathrm{DD} 1}{ }^{(2)}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator	-	12	25	mA
		3 MHz crystal oscillator		4	10	
		$V_{D D}=3 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator		3	8	
		3 MHz crystal oscillator		1	5	
	$\mathrm{I}_{\mathrm{D} 2}$	Idle mode: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator	-	3	10	
		3 MHz crystal oscillator		1.5	4	
		Idle mode: $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator		1.2	3	
		3 MHz crystal oscillator		0.5	1.5	
	$\mathrm{I}_{\text {D } 3}$	Sub operating: main-osc stop $V_{D D}=3 \mathrm{~V} \pm 10 \%$ 32.768 kHz crystal oscillator OSCCON. $4=1$	-	20	40	uA
	${ }_{\text {ID } 4}$	Sub idle mode: main-osc stop $V_{D D}=3 \mathrm{~V} \pm 10 \%$ 32.768 kHz crystal oscillator OSCCON. $4=1$	-	7	14	
	${ }^{\text {DD5 }}$	Main stop mode : sub-osc stop $V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=25^{\circ} \mathrm{C}$	-	1	3	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$		0.5	2	

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.
2. $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ include a power consumption of subsystem oscillator.
3. $I_{D D 3}$ and $I_{D D 4}$ are the current when the main system clock oscillation stop and the subsystem clock is used.

And does not include the LCD and Voltage booster and voltage level detector
4. $\mathrm{I}_{\mathrm{DD5}}$ is the current when the main and subsystem clock oscillation stop.

In case of S3C8245, the characteristic of V_{OH} and V_{OL} is differ with the characteristic of S3C8249 like as following. Other characteristics are same each other.

Table 19-3. D.C Electrical Characteristics of S3C8245
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ All output pins except $\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1.0}$	-	-	V
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$ Port 3.0 only in S3C8245	$\mathrm{V}_{\mathrm{DD}}-0.7$			
Output low voltage	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$ All output pins except $\mathrm{V}_{\mathrm{OL} 2}$	-	-	0.4	
	$\mathrm{V}_{\mathrm{OL2}}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=12 \mathrm{~mA}$ Port 3.0 only in S3C8245			0.7	

Table 19-4. A.C. Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Interrupt input high, low width (P0.0-P0.7)	tINTH, tINTL	$\mathrm{P} 0.0-\mathrm{P} 0.7, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	-	ns
nRESET input low width	tRSL	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	5	-	-	us

NOTE: User must keep more large value then min value.

Figure 19-1. Input Timing for External Interrupts (Ports 0)

Figure 19-2. Input Timing for nRESET

Table 19-5. Input/Output Capacitance

$$
\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{f}=1 \mathrm{MHz}$; unmeasured pins are returned to V_{SS}	-	-	10	pF
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$					
I/O capacitance	C_{IO}					

Table 19-6. Data Retention Supply Voltage in Stop Mode
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Data retention supply voltage	$\mathrm{V}_{\mathrm{DDDR}}$		2	-	5.5	V
Data retention supply current	$\mathrm{I}_{\mathrm{DDDR}}$	$\mathrm{V}_{\mathrm{DDDR}}=2 \mathrm{~V}$	-	-	3	uA

Figure 19-3. Stop Mode Release Timing Initiated by nRESET

NOTE: twait is the same as $16 \times$ BT clock.

Figure 19-4. Stop Mode (Main) Release Timing Initiated by Interrupts

Figure 19-5. Stop Mode (Sub) Release Timing Initiated by Interrupts

Table 19-7. A/D Converter Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Resolution			-	10	-	bit
Total accuracy		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.12 \mathrm{~V} \\ & \mathrm{AV}_{\mathrm{REF}}=5.12 \mathrm{~V} \\ & \mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{CPU} \text { clock }=10 \mathrm{MHz} \end{aligned}$	-	-	± 3	LSB
Integral Linearity Error	ILE			-	± 2	
Differential Linearity Error	DLE			-	± 1	
Offset Error of Top	EOT			± 1	± 3	
Offset Error of Bottom	EOB			± 0.5	± 2	
Conversion time (1)	$\mathrm{t}_{\mathrm{CON}}$	-	-	40	-	fxx
Analog input voltage	$\mathrm{V}_{\text {IAN }}$	-	$\mathrm{AV}_{\text {SS }}$	-	$A V_{\text {REF }}$	V
Analog input impedance	$\mathrm{R}_{\text {AN }}$	-	2	1000	-	$\mathrm{M} \Omega$
Analog reference voltage	$A V_{\text {REF }}$	-	2.5	-	V_{DD}	V
Analog ground	$\mathrm{AV}_{\text {SS }}$	-	$\mathrm{V}_{\text {SS }}$	-	$\mathrm{V}_{S S}+0.3$	
Analog input current	$\mathrm{I}_{\text {ADIN }}$	$\mathrm{AV}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	10	uA
Analog block current (2)	$\mathrm{I}_{\text {ADC }}$	$\mathrm{AV}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1	3	mA
		$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		0.5	1.5	
		$A V_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ When power down mode		100	500	nA

NOTES:

1. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.
2. I $A D C$ is an operating current during A / D conversion.

Table 19-8. Voltage Booster Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}\right.$ to $\left.5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Operating Voltage	VDD		2.0	-	5.5	V
Regulated Voltage	$\mathrm{V}_{\text {LCO }}$	$\mathrm{I}_{\text {LCO }}=5 \mathrm{uA}$ ($1 / 3$ bias)	0.9	1.0	1.15	
Booster Voltage	$\mathrm{V}_{\mathrm{LC} 1}$	Connect $1 \mathrm{M} \Omega$ load between V_{SS} and $\mathrm{V}_{\mathrm{LC} 1}$	$\begin{gathered} 2 \mathrm{~V}_{\mathrm{LCO}} \\ -0.1 \end{gathered}$	-	$\begin{aligned} & \text { 2VLCO } \\ & +0.1 \end{aligned}$	
	$\mathrm{V}_{\text {LC2 }}$	Connect $1 \mathrm{M} \Omega$ load between V_{SS} and $\mathrm{V}_{\mathrm{LC} 2}$	$\begin{gathered} 3 V_{\mathrm{LCO}} \\ -0.1 \end{gathered}$	-	$\begin{aligned} & 3 \text { 3VLCO } \\ & +0.1 \end{aligned}$	
Regulated Voltage	$\mathrm{V}_{\text {LCO }}$	LCO $=6 \mathrm{uA}$ ($1 / 2 \mathrm{bias}$)	1.4	1.5	1.7	
Booster Voltage	$\mathrm{V}_{\mathrm{LC} 1}$	Connect $1 \mathrm{M} \Omega$ load between V_{SS} and $\mathrm{V}_{\mathrm{LC} 1}$ Connect $1 \mathrm{M} \Omega$ load between $V_{S S}$ and $V_{L C 2}$	$\begin{gathered} 2 \mathrm{~V}_{\mathrm{LCO}} \\ -0.1 \end{gathered}$	-	$\begin{aligned} & \text { 2VLCO } \\ & +0.1 \end{aligned}$	
	$\mathrm{V}_{\text {LC2 }}$					

Table 19-9. Characteristics of Voltage Level Detect Circuit
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating Voltage of VLD	$\mathrm{V}_{\text {DDVLD }}$		1.8	-	5.5	V
Voltage of VLD	$\mathrm{V}_{\mathrm{VLD}}$	VLDCON.1.0 = 00b	2.05	2.2	2.35	V
		VLDCON.1.0 $=01 \mathrm{~b}$	2.25	2.4	2.55	
		VLDCON.1.0 = 10b	2.8	3.0	3.2	
		VLDCON.1.0 = 11b	3.7	4.0	4.3	
Hysteresys Voltage of VLD	$\Delta \mathrm{V}$	VLCDCON.1-.0=00	-	10	100	mV
Sum of Voltage Booster, Voltage Detector and Subidle current	IVBVLD	$\begin{aligned} & \text { IVB+IVLD+IDD4, } \\ & \text { VDD=3.0V } \end{aligned}$	-	15	40	uA

Table 19-10. Synchronous SIO Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{fxx}=10 \mathrm{MHz}$ oscillator)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
SCK Cycle time	$\mathrm{t}_{\mathrm{CYC}}$	-	200	-	-	ns
Serial Clock High Width	$\mathrm{t}_{\text {SCKH }}$	-	60	-	-	
Serial Clock Low Width	$\mathrm{t}_{\text {SCKL }}$	-	60	-	-	
Serial Output data delay time	t_{OD}	-	-	-	50	
Serial Input data setup time	t_{ID}	-	40	-	-	
Serial Input data Hold time	$\mathrm{t}_{\mathbb{H}}$	-	100	-	-	

Figure 19-6. Serial Data Transfer Timing

Table 19-11. Main Oscillator Frequency ($\mathrm{f}_{\mathrm{osc} 1}$)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Oscillator	Clock Circuit	Test Condition	Min	Typ	Max	Unit
Crystal	Crystal oscillation frequency	1	-	10	MHz	
Ceramic	Xout					

Table 19-12. Main Oscillator Clock Stabilization Time ($\mathrm{t}_{\mathrm{ST} 1}$)
($\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V)

Oscillator	Test Condition	Min	Typ	Max	Unit
Crystal	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V	-	-	40	ms
Ceramic	Stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range.	-	-	4	ms
External clock	$\mathrm{X}_{\mathbb{I N}}$ input high and low level width $\left(\mathrm{t}_{\mathrm{XH}}, \mathrm{t}_{\mathrm{XL}}\right)$	50	-	500	ns

NOTE: Oscillation stabilization time (tST 1) is the time required for the CPU clock to return to its normal oscillation frequency after a power-on occurs, or when Stop mode is ended by a nRESET signal. The nRESET should therefore be held at low level until the tST1 time has elapsed

Figure 19-7. Clock Timing Measurement at $X_{I N}$

Table 19-13. Sub Oscillator Frequency (foscz)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to 5.5 V)

Oscillator	Clock Circuit	Test Condition	Min	Typ	Max	Unit
Crystal	XTin XTout\|	Crystal oscillation frequency $\begin{aligned} & \mathrm{C} 1=22 \mathrm{pF}, \quad \mathrm{C} 2=33 \mathrm{pF} \\ & \mathrm{R}=39 \mathrm{k} \Omega \end{aligned}$	32	32.768	35	kHz
External Clock		$X \mathrm{~T}_{\mathbb{N}}$ input frequency	32	-	100	kHz

Table 19-14. Sub Oscillator(crystal) Stabilization Time ($\mathrm{t}_{\mathrm{ST} 2}$)
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Oscillator	Test Condition	Min	Typ	Max	Unit
Crystal Normal mode	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	-	1	2	sec
	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 4.5 V	-	-	10	sec
Crystal Strong mode	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 5.5 V	-	-	6	sec
	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 3.0 V	-	-	2	sec
External clock	$\begin{array}{l}\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \\ \end{array} \mathrm{XT}_{\mathbb{N}}$ input high and low level width($\left.\mathrm{t}_{\mathrm{XTH}}, \mathrm{t}_{\mathrm{XTL}}\right)$				

NOTE: Oscillation stabilization time $\left(\mathrm{t}_{\mathrm{ST}}\right)$ is the time required for the oscillator to it's normal oscillation when stop mode is released by interrupts.

Minimum instruction clock $=1 / 4 \times$ oscillator frequency

Figure 19-8. Operating Voltage Range

NOTES

MECHANICAL DATA

OVERVIEW

The S3C8245/C8249 microcontroller is currently available in 80-pin-QFP/TQFP package.

Figure 20-1. Package Dimensions (80-QFP-1420C)

Figure 20-2. Package Dimensions (80-TQFP-1212)

S3P8245/P8249 OTP

OVERVIEW

The S3P8245/P8249 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C8245/C8249 microcontroller. It has an on-chip OTP ROM instead of a masked ROM. The EPROM is accessed by serial data format.

The S3P8245/P8249 is fully compatible with the S3C8245/C8249, both in function and in pin configuration. Because of its simple programming requirements, the S3P8245/P8249 is ideal as an evaluation chip for the S3C8245/C8249.

Figure 21-1. S3P8245/P8249 Pin Assignments (80-QFP) Package

Table 21-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip Pin Name	During Programming			
	Pin Name	Pin No.	I/O	Function
P3.3	SDAT	10	I/O	Serial data pin. Output port when reading and input port when writing. Can be assigned as a Input/push-pull output port.
P3.4	SCLK	11	I	Serial clock pin. Input only pin.
V_{PP}	TEST	16	1	Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. (Option)
nRESET	nRESET	19	1	Chip Initialization
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$	12/13	-	Logic power supply pin. V_{DD} should be tied to +5 V during programming.

Table 21-2. Comparison of S3P8245/P8249 and S3C8245/C8249 Features

Characteristic	S3P8245/P8249	S3C8245/C8249
Program Memory	$16 \mathrm{~K} / 32 \mathrm{~K}$-byte EPROM	$16 \mathrm{~K} / 32 \mathrm{~K}$-byte mask ROM
Operating Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	1.8 V to 5.5 V	1.8 V to 5.5 V
OTP Programming Mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}(\mathrm{TEST})=12.5 \mathrm{~V}$	
Pin Configuration	$80-\mathrm{QFP} / 80-\mathrm{TQFP}$	$80-\mathrm{QFP} / 80-\mathrm{TQFP}$
EPROM Programmability	User Program 1 time	Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the V_{PP} (TEST) pin of the S3P8245/P8249, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 21-3 below.

Table 21-3. Operating Mode Selection Criteria

$\mathbf{V}_{\mathbf{D D}}$	$\mathbf{V}_{\mathbf{P P}}$ (TEST)	REG/nMEM	Address(A15-A0)	R/W	Mode
5 V	5 V	0	0000 H	1	EPROM read
	12.5 V	0	0000 H	0	EPROM program
	12.5 V	0	0000 H	1	EPROM verify
	12.5 V	1	$0 E 3 F H$	EPROM read protection	

NOTE: "0" means Low level; "1" means High level.

Table 21-4. D.C Electrical Characteristics
$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating voltage	$V_{D D}$	$\mathrm{f}_{\mathrm{CPU}}=10 \mathrm{MHz}$	2.7	-	5.5	V
		All input pins except $\mathrm{V}_{\mathbb{1 H 2}, 3}$	1.8	-	5.5	
Input high voltage	V_{1+1}	Port 4,5 $\mathrm{V}_{\text {LCD2 }} \geq \mathrm{V}_{\mathrm{DD}}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	
	V_{1+2}	$\mathrm{X}_{\mathbb{N}}, \mathrm{XT}_{\mathbb{N}}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {D }}$	
	V_{1+3}	All input pins except $\mathrm{V}_{\text {IL2 }}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-} 0.1$	-	V_{DD}	
Input low voltage	$\mathrm{V}_{\mathrm{IL} 1}$	$\mathrm{X}_{\mathbb{N},} \times \mathrm{XT}_{\mathbb{N}}$	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\mathrm{IL} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ All output pins			0.1	
Output high voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ All output pins	$\mathrm{V}_{\mathrm{DD}}-1.0$	-	-	
Output low voltage	$\mathrm{V}_{\text {OL }}$		-	-	0.4	

Table 21-4. D.C. Electrical Characteristics (Continued)
$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input high leakage current	${ }_{\text {LIH1 }}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}} \\ & \text { All input pins except } \mathrm{I}_{\mathrm{LIH}} 2 \end{aligned}$	-	-	3	
	${ }_{\text {LIH2 }}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{X}_{\mathbb{N},}, \mathrm{XT}_{\mathbb{N}} \end{aligned}$			20	
Input low leakage current	${ }_{\text {LIL1 }}$	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ All input pins except lLIL2	-	-	-3	uA
	LIL2	$\begin{aligned} & V_{\mathbb{I N}^{\prime}}=0 \mathrm{~V} \\ & \mathrm{X}_{\mathbb{N},}, \mathrm{XT} \mathrm{~T}_{\mathbb{N},} \text { nRESET } \end{aligned}$			-20	
Output high leakage current	${ }^{\text {LOH }}$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}$ All I/O pins and Output pins	-	-	3	
Output low leakage current	LoL	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \text { All I/O pins and Output pins } \end{aligned}$	-	-	-3	
Oscillator feed back resistors	$\mathrm{R}_{\text {osc } 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{X}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{X}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	300	600	1500	$k \Omega$
Pull-up resistor	$\mathrm{R}_{\mathrm{L} 1}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \text { Port } 0,1,2,3,4,5 \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	25	50	100	
	$\mathrm{R}_{\mathrm{L} 2}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text {, nRESET only } \end{aligned}$	110	210	310	
$\mathrm{V}_{\text {LCO }}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LCo }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (1/3 bias mode)	0.9	1.0	1.15	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (1/2 bias mode)	1.4	1.5	1.7	
$\mathrm{V}_{\mathrm{LC} 1}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LC1 }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$2 \mathrm{~V}_{\text {LCO }}-0.1$	-	$2 \mathrm{~V}_{\text {LCO }}+0.1$	
$\mathrm{V}_{\text {LC2 }}$ out voltage (Booster run mode)	$\mathrm{V}_{\text {LC2 }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$3 \mathrm{~V}_{\text {LCO }}-0.1$	-	$3 \mathrm{~V}_{\mathrm{LCO}}+0.1$	
COM output voltage deviation	V_{DC}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LC} 2}=3 \mathrm{~V} \\ & \left(\mathrm{~V}_{\mathrm{LC}}-\mathrm{COMi}\right) \\ & 10= \pm 15 \mu \mathrm{~A}(1=0-3) \end{aligned}$	-	± 60	± 120	mV
SEG output voltage deviation	$\mathrm{V}_{\text {Ds }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LC} 2}=3 \mathrm{~V} \\ & \left.\mathrm{~V}_{\mathrm{LC}}-\mathrm{COMi}\right) \\ & 1 \mathrm{O}= \pm 15 \mu \mathrm{~A}(1=0-3) \end{aligned}$	-	± 60	± 120	

NOTE: Low leakage current is absolute value.

Table 21-4. D.C. Electrical Characteristics (Concluded)
($\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply current ${ }^{(1)}$	$\mathrm{I}_{\mathrm{DD} 1}{ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator	-	12	25	mA
		3 MHz crystal oscillator		4	10	
		$V_{D D}=3 V \pm 10 \%$ 10 MHz crystal oscillator		3	8	
		3 MHz crystal oscillator		1	5	
	$\mathrm{I}_{\text {D2 }}$	Idle mode: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator		3	10	
		3 MHz crystal oscillator		1.5	4	
		Idle mode: $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$ 10 MHz crystal oscillator		1.2	3	
		3 MHz crystal oscillator		0.5	1.5	
	$\mathrm{I}_{\text {DS3 }}$	Sub operating: main-osc stop $V_{D D}=3 \mathrm{~V} \pm 10 \%$ 32.768 kHz crystal oscillator $\text { OSCCON. } 4=1$	-	20	40	uA
	${ }^{\text {DD4 }}$	Sub idle mode: main-osc stop $V_{D D}=3 \mathrm{~V} \pm 10 \%$ 32.768 kHz crystal oscillator OSCCON. $4=1$	-	7	14	
	$\mathrm{I}_{\text {DD5 }}$	Main stop mode : sub-osc stop $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1	3	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$		0.5	2	

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.
2. $I_{D D}$ and $I_{D D 2}$ include a power consumption of subsystem oscillator.
3. $I_{D D 3}$ and $I_{D D 4}$ are the current when the main system clock oscillation stop and the subsystem clock is used.

And does not include the LCD, voltage booster, and voltage level detector.
4. $\mathrm{I}_{\mathrm{DD5}}$ is the current when the main and subsystem clock oscillation stop.

Case of S3P8245, the characteristic of V_{OH} and V_{OL} is differ with the characteristic of S3P8249 like as bellow. Other characteristics are same each other.

Table 21-5. D.C Electrical Characteristics of S3C8245
$\left(\mathrm{T}_{\mathrm{A}}=-25{ }^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ All output pins except $\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1.0}$	-	-	V
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$ Port 3.0 only in S3P8245	$\mathrm{V}_{\mathrm{DD}}-0.7$			
Output low voltage	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ All output pins except $\mathrm{V}_{\mathrm{OL} 2}$	-	-	0.4	
	$\mathrm{V}_{\mathrm{OL} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=12 \mathrm{~mA}$ Port 3.0 only in S3P8245			0.7	

Figure 21-2. Operating Voltage Range

NOTES

SAMSUNG

DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development support system is configured with a host system, debugging tools, and support software. For the host system, any standard computer that operates with MS-DOS, Windows 95 , and 98 as its operating system can be used. One type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, and OPENice for S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates object code in standard hexadecimal format. Assembled program code includes the object code that is used for ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is a relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a source file containing assembly language statements and translates into a corresponding source code, object code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating system. It produces the relocatable object code only, so the user should link object file. Object files can be linked with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device automatically.

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters are included with the device-specific target board.

Figure 22-1. SMDS Product Configuration (SMDS2+)

TB8245/9 TARGET BOARD

The TB8245/9 target board is used for the S3C8245/C8249 microcontroller. It is supported with the SMDS2+.

Figure 22-2. TB8245/8249 Target Board Configuration

Table 22-1. Power Selection Settings for TB8245/9

NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:

Table 22-2. Main-clock Selection Settings for TB8245/9

Sub Clock Settings	Operating Mode	Comments
		Set the XI switch to "MDS" when the target board is connected to the SMDS2/SMDS2+.
		Set the XI switch to "XTAL" when the target board is used as a standalone unit, and is not connected to the SMDS2/SMDS2+.

Table 22-3. Device Selection Settings for TB8245/9

"To User_Vcc" Settings	Operating Mode		Comments
Device Selection 8245 \square 8249	TB8249	Target System	Operate with TB8249
- Selection 8249	TB8245	Target System	Operate with TB8245

SMDS2+ SELECTION (SAM8)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 22-4. The SMDS2+ Tool Selection Setting

IDLE LED

The Yellow LED is ON when the evaluation chip (S3E8240) is in idle mode.

STOP LED

The Red LED is ON when the evaluation chip (S3E8240) is in stop mode.

Figure 22-3. 40-Pin Connectors (J101, J102) for TB8245/8249

Figure 22-4. S3E8240 Cables for 80-QFP Package

